scholarly journals Relationship between body composition, blood volume and maximal oxygen uptake

2010 ◽  
Vol 34 (S34) ◽  
pp. 485-490 ◽  
Author(s):  
C. F. KEARNS ◽  
K. H. McKEEVER ◽  
H. JOHN-ALDER ◽  
T. ABE ◽  
W. F. BRECHUE
2019 ◽  
Vol 14 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Andrew J. Carnes ◽  
Sara E. Mahoney

Purpose: This study longitudinally compared changes in running performance (5-km time trial) and fitness (maximal oxygen uptake [VO2max] and body composition [BC]) between polarized training and CrossFit Endurance (CFE) in recreational runners. Methods: Participants (N = 21) completed 12 wk of CFE or polarized endurance training (POL). Both groups trained 5 d·wk−1. POL ran 5 d·wk−1, whereas CFE ran 3 d·wk−1 and performed CrossFit 3 d·wk−1 (run + CrossFit 1 d·wk−1). Intensity was classified as low, moderate, or high (zone 1, 2, or 3) according to ventilatory thresholds. POL was prescribed greater volume (295 [67] min·wk−1), distributed as 85%/5%/10% in Z1/Z2/Z3. CFE emphasized a lower volume (110 [18] min·wk−1) distribution of 48%/8%/44%. Results: POL ran 283 (75.9) min·wk−1 and 47.3 (11.6) km·wk−1, both exceeding the 117 (32.2) min·wk−1 and 19.3 (7.17) km·wk−1 in CFE (P < .001). The POL distribution (74%/11%/15%) had greater total and percentage Z1 (P < .001) than CFE (46%/15%/39%), which featured higher percentage Z3 (P < .001). Time trial improved −93.8 (40.4) s (−6.21% [2.16%]) in POL (P < .001) and −84.2 (65.7) s (−5.49% [3.56%]) in CFE (P = .001). BC improved by −2.45% (2.59%) fat in POL (P = .02) and −2.62% (2.53%) in CFE (P = .04). The magnitude of improvement was not different between groups for time trial (P = .79) or BC (P = .88). Both groups increased VO2max (P ≤ .01), but with larger magnitude (P = .04, d = 0.85) in POL (4.3 [3.6] mL·kg·min−1) than CFE (1.78 [1.9] mL·kg·min−1). Conclusions: Recreational runners achieved similar improvement in 5-km performance and BC through polarized training or CFE, but POL yielded a greater increase in VO2max. Extrapolation to longer distances requires additional research.


1985 ◽  
Vol 56 (2) ◽  
pp. 180-185 ◽  
Author(s):  
Priscilla M. Clarkson ◽  
Patty S. Freedson ◽  
Betsy Keller ◽  
David Carney ◽  
Margaret Skrinar

CHEST Journal ◽  
2003 ◽  
Vol 124 (4) ◽  
pp. 1494-1499 ◽  
Author(s):  
Agnés Vinet ◽  
Stéphane Mandigout ◽  
Stéphane Nottin ◽  
LongDang Nguyen ◽  
Anne-Marie Lecoq ◽  
...  

1997 ◽  
Vol 82 (5) ◽  
pp. 1508-1516 ◽  
Author(s):  
Michael L. Pollock ◽  
Larry J. Mengelkoch ◽  
James E. Graves ◽  
David T. Lowenthal ◽  
Marian C. Limacher ◽  
...  

Pollock, Michael L., Larry J. Mengelkoch, James E. Graves, David T. Lowenthal, Marian C. Limacher, Carl Foster, and Jack H. Wilmore. Twenty-year follow-up of aerobic power and body composition of older track athletes. J. Appl. Physiol. 82(5): 1508–1516, 1997.—The purpose was to determine the aerobic power (maximal oxygen uptake) and body composition of older track athletes after a 20-yr follow-up (T3). At 20 yr, 21 subjects [mean ages: 50.5 ± 8.5 yr at initial evaluation (T1), 60.2 ± 8.8 yr at 10-yr follow-up (T2), and 70.4 ± 8.8 yr at 20-yr follow-up (T3)] were divided into three intensity groups: high (H; remained elite; n = 9); moderate (M; continued frequent moderate-to-rigorous endurance training; n = 10); and low (L; greatly reduced training; n = 2). All groups decreased in maximal oxygen uptake at each testing point (H, 8 and 15%; M, 13 and 14%; and L, 18 and 34% from T1 to T2 and T2 to T3, respectively). Maximal heart rate showed a linear decrease of ∼5–7 beats ⋅ min−1 ⋅ decade−1 and was independent of training status. Body weight remained stable for the H and M groups and percent fat increased ∼2–2.5%/decade. Although fat-free weight decreased at each testing point, there was a trend for those who began weight-training exercise to better maintain it. Cross-sectional analysis at T3 showed that leg strength and bone mineral density were generally maintained from age 60 to 89 yr. Those who performed weight training had a greater arm region bone mineral density than those who did not. These longitudinal data show that the physiological capacities of older athletes are reduced despite continued vigorous endurance exercise over a 20-yr period (∼8–15%/decade). Changes in body composition appeared to be less than those shown for the healthy sedentary population and were related to changes in training habits.


Sign in / Sign up

Export Citation Format

Share Document