Contribution of central and peripheral adaptations to changes in maximal oxygen uptake following 4 weeks of sprint interval training

2018 ◽  
Vol 43 (10) ◽  
pp. 1059-1068 ◽  
Author(s):  
James P. Raleigh ◽  
Matthew D. Giles ◽  
Hashim Islam ◽  
Matthew Nelms ◽  
Robert F. Bentley ◽  
...  

The current study examined the contribution of central and peripheral adaptations to changes in maximal oxygen uptake (V̇O2max) following sprint interval training (SIT). Twenty-three males completed 4 weekly SIT sessions (8 × 20-s cycling bouts at ∼170% of work rate at V̇O2max, 10-s recovery) for 4 weeks. Following completion of training, the relationship between changes in V̇O2max and changes in central (cardiac output) and peripheral (arterial–mixed venous oxygen difference (a-vO2diff), muscle capillary density, oxidative capacity, fibre-type distribution) adaptations was determined in all participants using correlation analysis. Participants were then divided into tertiles on the basis of the magnitude of their individual V̇O2max responses, and differences in central and peripheral adaptations were examined in the top (HI; ∼10 mL·kg−1·min−1 increase in V̇O2max, p < 0.05) and bottom (LO; no change in V̇O2max, p > 0.05) tertiles (n = 8 each). Training had no impact on maximal cardiac output, and no differences were observed between the LO group and the HI group (p > 0.05). The a-vO2diff increased in the HI group only (p < 0.05) and correlated significantly (r = 0.71, p < 0.01) with changes in V̇O2max across all participants. Muscle capillary density (p < 0.02) and β-hydroxyacyl-CoA dehydrogenase maximal activity (p < 0.05) increased in both groups, with no between-group differences (p > 0.05). Citrate synthase maximal activity (p < 0.01) and type IIA fibre composition (p < 0.05) increased in the LO group only. Collectively, although the heterogeneity in the observed V̇O2max response following 4 weeks of SIT appears to be attributable to individual differences in systemic vascular and/or muscular adaptations, the markers examined in the current study were unable to explain the divergent V̇O2max responses in the LO and HI groups.

2005 ◽  
Vol 98 (6) ◽  
pp. 1985-1990 ◽  
Author(s):  
Kirsten A. Burgomaster ◽  
Scott C. Hughes ◽  
George J. F. Heigenhauser ◽  
Suzanne N. Bradwell ◽  
Martin J. Gibala

Parra et al. ( Acta Physiol. Scand 169: 157–165, 2000) showed that 2 wk of daily sprint interval training (SIT) increased citrate synthase (CS) maximal activity but did not change “anaerobic” work capacity, possibly because of chronic fatigue induced by daily training. The effect of fewer SIT sessions on muscle oxidative potential is unknown, and aside from changes in peak oxygen uptake (V̇o2 peak), no study has examined the effect of SIT on “aerobic” exercise capacity. We tested the hypothesis that six sessions of SIT, performed over 2 wk with 1–2 days rest between sessions to promote recovery, would increase CS maximal activity and endurance capacity during cycling at ∼80% V̇o2 peak. Eight recreationally active subjects [age = 22 ± 1 yr; V̇o2 peak = 45 ± 3 ml·kg−1·min−1 (mean ± SE)] were studied before and 3 days after SIT. Each training session consisted of four to seven “all-out” 30-s Wingate tests with 4 min of recovery. After SIT, CS maximal activity increased by 38% (5.5 ± 1.0 vs. 4.0 ± 0.7 mmol·kg protein−1·h−1) and resting muscle glycogen content increased by 26% (614 ± 39 vs. 489 ± 57 mmol/kg dry wt) (both P < 0.05). Most strikingly, cycle endurance capacity increased by 100% after SIT (51 ± 11 vs. 26 ± 5 min; P < 0.05), despite no change in V̇o2 peak. The coefficient of variation for the cycle test was 12.0%, and a control group ( n = 8) showed no change in performance when tested ∼2 wk apart without SIT. We conclude that short sprint interval training (∼15 min of intense exercise over 2 wk) increased muscle oxidative potential and doubled endurance capacity during intense aerobic cycling in recreationally active individuals.


2019 ◽  
Vol 44 (5) ◽  
pp. 499-506 ◽  
Author(s):  
Paulina Hebisz ◽  
Rafał Hebisz ◽  
Eugenia Murawska-Ciałowicz ◽  
Marek Zatoń

The study determined the effects of sprint interval training on the acute and chronic changes of serum brain-derived neurotrophic factor (BDNF) and aerobic capacity. Twenty-six cyclists were divided into experimental (E) and control groups. Both groups executed a 6-month exercise intervention involving high-intensity interval training (HIIT) and continuous endurance training (CET) with group E replacing HIIT and CET sessions with sprint interval training (SIT) that was executed twice a week. Two exercise tests were administered prior to the intervention and at 2 and 6 months after study outset. Incremental exercise test assessed aerobic capacity by measuring maximal oxygen uptake and work output; the sprint interval exercise test (SIXT) comprises 3 sets of four 30-s all-out repetitions interspersed with 90 s of rest with sets separated by 25–40 min of active recovery. Oxygen uptake, work output, BDNF, and vascular endothelial growth factor A (VEGF-A) concentrations (baseline, 10 min after first set, and 10 and 60 min after third SIXT set) were taken during the SIXT. Significant decreases in BDNF relative to baseline values were observed 10 min after the first set and 60 min after the third set in group E at the 2- and 6-month assessments. Increases in baseline VEGF-A after 2 and 6 months of training and increases in maximal oxygen uptake after 2 months of training were also observed only in group E. The inclusion of SIT with HIIT and CET shows positive long-term effects, including increased maximal oxygen uptake and baseline VEGF-A and a reduction in BDNF below baseline levels during and after SIXT.


Author(s):  
Haochong Liu ◽  
Bo Leng ◽  
Qian Li ◽  
Ye Liu ◽  
Dapeng Bao ◽  
...  

This study was aimed to: (1) investigate the effects of physiological functions of sprint interval training (SIT) on the aerobic capacity of elite badminton players; and (2) explore the potential mechanisms of oxygen uptake, transport and recovery within the process. Thirty-two elite badminton players volunteered to participate and were randomly divided into experimental (Male-SIT and Female-SIT group) and control groups (Male-CON and Female-CON) within each gender. During a total of eight weeks, SIT group performed three times of SIT training per week, including two power bike trainings and one multi-ball training, while the CON group undertook two Fartlek runs and one regular multi-ball training. The distance of YO-YO IR2 test (which evaluates player’s ability to recover between high intensity intermittent exercises) for Male-SIT and Female-SIT groups increased from 1083.0 ± 205.8 m to 1217.5 ± 190.5 m, and from 725 ± 132.9 m to 840 ± 126.5 m (p < 0.05), respectively, which were significantly higher than both CON groups (p < 0.05). For the Male-SIT group, the ventilatory anaerobic threshold and ventilatory anaerobic threshold in percentage of VO2max significantly increased from 3088.4 ± 450.9 mL/min to 3665.3 ± 263.5 mL/min (p < 0.05),and from 74 ± 10% to 85 ± 3% (p < 0.05) after the intervention, and the increases were significantly higher than the Male-CON group (p < 0.05); for the Female-SIT group, the ventilatory anaerobic threshold and ventilatory anaerobic threshold in percentage of VO2max were significantly elevated from 1940.1 ± 112.8 mL/min to 2176.9 ± 78.6 mL/min, and from 75 ± 4% to 82 ± 4% (p < 0.05) after the intervention, which also were significantly higher than those of the Female-CON group (p < 0.05). Finally, the lactate clearance rate was raised from 13 ± 3% to 21 ± 4% (p < 0.05) and from 21 ± 5% to 27 ± 4% for both Male-SIT and Female-SIT groups when compared to the pre-test, and this increase was significantly higher than the control groups (p < 0.05). As a training method, SIT could substantially improve maximum aerobic capacity and aerobic recovery ability by improving the oxygen uptake and delivery, thus enhancing their rapid repeated sprinting ability.


1981 ◽  
Vol 59 (11) ◽  
pp. 1146-1154 ◽  
Author(s):  
S. G. Thomas ◽  
D. A. Cunningham ◽  
M. J. Plyley ◽  
D. R. Boughner ◽  
R. A. Cook

The role of central and peripheral adaptations in the response to endurance training was examined. Changes in cardiac structure and function, oxygen extraction, and muscle enzyme activities following one-leg training were studied.Eleven subjects (eight females, three males) trained on a cycle ergometer 4 weeks with one leg (leg 1), then 4 weeks with the second leg (leg 2). Cardiovascular responses to exercise with both legs and each leg separately were evaluated at entry (T1), after 4 weeks of training (T2), and after a second 4 weeks of training (T3). Peak oxygen uptake ([Formula: see text] peak) during exercise with leg 1 (T1 to T2 increased 19.8% (P < 0.05) and during exercise with leg 2 (T2 to T3 increased 16.9% (P < 0.05). Maximal oxygen uptake with both legs increased 7.9% from T1 to T2 and 9.4% from T2 to T3 (P < 0.05). During exercise at 60% of [Formula: see text] peak, cardiac output [Formula: see text] was increased significantly only when the trained leg was exercised. [Formula: see text] increased 12.2% for leg 1 between T1 and T2 and 13.0% for leg 2 between T2 and T3 (P < 0.05). M-mode echocardiographic assessment of left ventricular internal diameter at diastole and peak velocity of circumferential fibre shortening at rest or during supine cycle ergometer exercise at T1 and T3 revealed no training induced changes in cardiac dimensions or function. Enzyme analysis of muscle biopsy samples from the vastus lateralis (At T1, T2, T3) revealed no consistent pattern of change in aerobic (malate dehydrogenase and 3-hydroxyacyl-CoA dehydrogenase) or anaerobic (phosphofructokinase, lactate dehydroginase, and creatine kinase) enzyme activities. Increases in cardiac output and maximal oxygen uptake which result from short duration endurance training can be achieved, therefore, without measurable central cardiac adaptation. The absence of echocardio-graphically determined changes in cardiac dimensions and contractility and the absence of an increase in cardiac output during exercise with the nontrained leg following training of the contralateral limb support this conclusion.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Flávio Pereira ◽  
Roger de Moraes ◽  
Eduardo Tibiriçá ◽  
Antonio C. L. Nóbrega

Interval training (IT), consisting of alternated periods of high and low intensity exercise, has been proposed as a strategy to induce more marked biological adaptations than continuous exercise training (CT). The purpose of this study was to assess the effects of IT and CT with equivalent total energy expenditure on capillary skeletal and cardiac muscles in rats. Wistar rats ran on a treadmill for 30 min per day with no slope (0%), 4 times/week for 13 weeks. CT has constant load of 70% max; IT has cycles of 90% max for 1 min followed by 1 min at 50% max. CT and IT increased endurance and muscle oxidative capacity and attenuated body weight gain to a similar extent (P>0.05). In addition, CT and IT similarly increased functional capillary density of skeletal muscle (CT:30.6±11.7%; IT:28.7±11.9%) and the capillary-to-fiber ratio in skeletal muscle (CT:28.7±14.4%; IT:40.1±17.2%) and in the left ventricle (CT:57.3±53.1%; IT:54.3±40.5%). In conclusion, at equivalent total work volumes, interval exercise training induced similar functional and structural alterations in the microcirculation of skeletal muscle and myocardium in healthy rats compared to continuous exercise training.


Author(s):  
William J.M. Kinnear ◽  
James H. Hull

This chapter outlines how dividing the volume of oxygen uptake (VO2) by the pulse rate gives an estimate of the stroke volume of the heart. The amount of oxygen taken up with each heartbeat is called the oxygen pulse (O2 pulse). It should increase steadily on exercise to a value above 10 ml/beat and may continue to rise during the recovery phase. A low O2 pulse can be an indicator of low cardiac output. If the maximum VO2 (VO2max) is normal, caution should be used in the interpretation of a low O2 pulse. Sometimes the O2 pulse is abnormal because of a fall in peripheral arterial oxygen saturation (SpO2) or mixed venous oxygen levels.


Sign in / Sign up

Export Citation Format

Share Document