scholarly journals A special issue on calcium dynamics of the heart: remodeling of ion channels and regulatory pathways

Author(s):  
Dan J. Bare ◽  
Lixia Yue ◽  
Xun Ai
2020 ◽  
Vol 21 (10) ◽  
pp. 3553
Author(s):  
Rashid Giniatullin

The special issue “Ion Channels of Nociception” contains 13 articles published by 73 authors from different countries united by the main focusing on the peripheral mechanisms of pain. The content covers the mechanisms of neuropathic, inflammatory, and dental pain as well as pain in migraine and diabetes, nociceptive roles of P2X3, ASIC, Piezo and TRP channels, pain control through GPCRs and pharmacological agents and non-pharmacological treatment with electroacupuncture.


2017 ◽  
Vol 117 (2) ◽  
pp. 523-536 ◽  
Author(s):  
Michael W. Country ◽  
Michael G. Jonz

Horizontal cells (HCs) are inhibitory interneurons of the vertebrate retina. Unlike typical neurons, HCs are chronically depolarized in the dark, leading to a constant influx of Ca2+. Therefore, mechanisms of Ca2+ homeostasis in HCs must differ from neurons elsewhere in the central nervous system, which undergo excitotoxicity when they are chronically depolarized or stressed with Ca2+. HCs are especially well characterized in teleost fish and have been used to unlock mysteries of the vertebrate retina for over one century. More recently, mammalian models of the retina have been increasingly informative for HC physiology. We draw from both teleost and mammalian models in this review, using a comparative approach to examine what is known about Ca2+ pathways in vertebrate HCs. We begin with a survey of Ca2+-permeable ion channels, exchangers, and pumps and summarize Ca2+ influx and efflux pathways, buffering, and intracellular stores. This includes evidence for Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and N-methyl-d-aspartate receptors and for voltage-gated Ca2+ channels. Special attention is given to interactions between ion channels, to differences among species, and in which subtypes of HCs these channels have been found. We then discuss a number of unresolved issues pertaining to Ca2+ dynamics in HCs, including a potential role for Ca2+ in feedback to photoreceptors, the role for Ca2+-induced Ca2+ release, and the properties and functions of Ca2+-based action potentials. This review aims to highlight the unique Ca2+ dynamics in HCs, as these are inextricably tied to retinal function.


2012 ◽  
Vol 12 (1) ◽  
pp. 1-1 ◽  
Author(s):  
Adrian J. Wolstenholme
Keyword(s):  

Metabolites ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 45
Author(s):  
Flaminia Cesare Marincola ◽  
Luisa Mannina

Over the last decade, the number of scientific publications in the metabolomics area has increased exponentially. The literature includes ~29,000 contributions (articles and reviews) during the period of 2009–2019, revealing metabolomics applications in a wide range of fields, including medical, plant, animal, and food sciences (this bibliographic data were retrieved from the SCOPUS database, searching “metabolomics” in keywords). The high applicability of this approach is due to its ability to qualitatively and quantitatively characterize the chemical profile of all the low molecular weight metabolites (metabolome) present in cells, tissues, organs, and biological fluids as end products of the cellular regulatory pathways. Thus, providing a snapshot of the phenotype of a biological system, metabolomics offers useful contributions to a comprehensive insight into the functional status of human, animal, plant, and microbe organisms. The contributions collected in this Special Issue (12 articles, one review and one technical report) report on the recent technical advances and practical applications of NMR spectroscopy to metabolomics analyses.


Zygote ◽  
2012 ◽  
Vol 21 (3) ◽  
pp. 214-220 ◽  
Author(s):  
M.T. Ajmat ◽  
F. Bonilla ◽  
P.C. Hermosilla ◽  
L. Zelarayán ◽  
M.I. Bühler

SummaryTransient increases in the concentration of cytosolic Ca2+ are essential for triggering egg activation events. Increased Ca2+ results from its rapid release from intracellular stores, mainly mediated by one or both intracellular calcium channels: the inositol trisphosphate receptor (IP3R) and the ryanodine receptor (RyR). Several regulatory pathways that tailor the response of these channels to the specific cell type have been proposed. Among its many modulatory actions, calcium can serve as an activator of a cytosolic phospholipase A2 (cPLA2), which releases arachidonic acid from phospholipids of the endoplasmic reticulum as well as from the nuclear envelope. Previous studies have suggested that arachidonic acid and/or its metabolites were able to modulate the activity of several ion channels. Based on these findings, we have studied the participation of the phospholipase A2 (PLA2) pathway in the process of Bufo arenarum oocyte activation and the interrelation between any of its metabolites and the ion channels involved in the calcium release from the intracellular reservoirs at fertilization. We found that addition of both melittin, a potent PLA2 activator, and arachidonic acid, the main PLA2 reaction metabolite, was able to induce activation events in a bell-shaped manner. Differential regulation of IP3Rs and RyRs by arachidonic acid and its products could explain melittin and arachidonic acid behaviour in Bufo arenarum egg activation. The concerted action of arachidonic acid and/or its metabolites could provide controlled mobilization of calcium from intracellular reservoirs and useful tools for understanding calcium homeostasis in eggs that express both types of receptors.


2020 ◽  
Vol 73 (4) ◽  
pp. 287
Author(s):  
Meng-Wei Kan ◽  
David J. Craik

This article is part of a special issue celebrating the contributions of Professor Paul Alewood to peptide science. We begin by providing a summary of collaborative projects between the Alewood and Craik groups at The University of Queensland and highlighting the impacts of some of these studies. In particular, studies on the discovery, synthesis, structures, and bioactivities of disulfide-rich toxins from animal venoms have led to a greater understanding of the biology of ion channels and to applications of these bioactive peptides in drug design. The second part of the article focuses on plant-derived disulfide-rich cyclic peptides, known as cyclotides, and includes an analysis of the geographical distribution of Australasian plant species that contain cyclotides as well as an analysis of the diversity of cyclotide sequences found in Australasian plants. This should provide a useful resource for researchers to access native cyclotides and explore their chemistry and biology.


2005 ◽  
Vol 4 (1) ◽  
pp. 1-2 ◽  
Author(s):  
V. Krishnamurthy ◽  
S.-H. Chung ◽  
G. Dumont

Sign in / Sign up

Export Citation Format

Share Document