Induction of a leaf specific geranylgeranyl pyrophosphate synthase and emission of (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways

Planta ◽  
2006 ◽  
Vol 224 (5) ◽  
pp. 1197-1208 ◽  
Author(s):  
Kai Ament ◽  
Chris C. Van Schie ◽  
Harro J. Bouwmeester ◽  
Michel A. Haring ◽  
Robert C. Schuurink
2003 ◽  
Vol 16 (2) ◽  
pp. 141-148 ◽  
Author(s):  
C. D. Smart ◽  
K. L. Myers ◽  
S. Restrepo ◽  
G. B. Martin ◽  
W. E. Fry

We compared tomato defense responses to Phytophthora infestans in highly compatible and partially compatible interactions. The highly compatible phenotype was achieved with a tomato-specialized isolate of P. infestans, whereas the partially compatible phenotype was achieved with a nonspecialized isolate. As expected, there was induction of the hypersensitive response (HR) earlier during the partially compatible interaction. However, contrary to our expectation, pathogenesis-related (PR) gene expression was not stimulated sooner in the partially compatible interaction. While the level of PR gene expression was quite similar in the two interactions, the LeDES gene (which encodes an enzyme necessary for the production of divinyl ethers) was expressed at a much higher level in the partially compatible interaction at 48 h after inoculation. Host reaction to the different pathogen genotypes was not altered (compared with wild type) in mutant tomatoes that were ethylene-insensitive (Never-ripe) or those with reduced ability to accumulate jasmonic acid (def-1). Similarly, host reaction was not altered in NahG transgenic tomatoes unable to accumulate salicylic acid. These combined data indicate that partial resistance in tomato to P. infestans is independent of ethylene, jasmonic acid, and salicylic acid signaling pathways.


Plant Science ◽  
2020 ◽  
Vol 300 ◽  
pp. 110635
Author(s):  
Yajun Liu ◽  
Ming Li ◽  
Tongtong Li ◽  
Yujie Chen ◽  
Lingjie Zhang ◽  
...  

2008 ◽  
Vol 18 (9) ◽  
pp. 650-655 ◽  
Author(s):  
Lionel Navarro ◽  
Rajendra Bari ◽  
Patrick Achard ◽  
Purificación Lisón ◽  
Adnane Nemri ◽  
...  

2011 ◽  
Vol 52 (9) ◽  
pp. 1686-1696 ◽  
Author(s):  
Kaoru Takeuchi ◽  
Atsuko Gyohda ◽  
Makiko Tominaga ◽  
Madoka Kawakatsu ◽  
Atsushi Hatakeyama ◽  
...  

2020 ◽  
Vol 33 (12) ◽  
pp. 1424-1437
Author(s):  
Chuanhong Bian ◽  
Yabing Duan ◽  
Jueyu Wang ◽  
Qian Xiu ◽  
Jianxin Wang ◽  
...  

Validamycin A (VMA) is an aminoglycoside antibiotic used to control rice sheath blight. Although it has been reported that VMA can induce the plant defense responses, the mechanism remains poorly understood. Here, we found that reactive oxygen species (ROS) bursts and callose deposition in Arabidopsis thaliana, rice (Oryza sativa L.), and wheat (Triticum aestivum L.) were induced by VMA and were most intense with 10 μg of VMA per milliliter at 24 h. Moreover, we showed that VMA induced resistance against Pseudomonas syringae, Botrytis cinerea, and Fusarium graminearum in Arabidopsis leaves, indicating that VMA induces broad-spectrum disease resistance in both dicots and monocots. In addition, VMA-mediated resistance against P. syringae was not induced in NahG transgenic plants, was partially decreased in npr1 mutants, and VMA-mediated resistance to B. cinerea was not induced in npr1, jar1, and ein2 mutants. These results strongly indicated that VMA triggers plant defense responses to both biotrophic and necrotrophic pathogens involved in salicylic acid (SA) and jasmonic acid/ethylene (JA/ET) signaling pathways and is dependent on NPR1. In addition, transcriptome analysis further revealed that VMA regulated the expression of genes involved in SA, JA/ET, abscisic acid (ABA), and auxin signal pathways. Taken together, VMA induces systemic resistance involving in SA and JA/ET signaling pathways and also exerts a positive influence on ABA and auxin signaling pathways. Our study highlights the creative application of VMA in triggering plant defense responses against plant pathogens, providing a valuable insight into applying VMA to enhance plant resistance and reduce the use of chemical pesticides. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


Sign in / Sign up

Export Citation Format

Share Document