scholarly journals RSOsPR10 Expression in Response to Environmental Stresses is Regulated Antagonistically by Jasmonate/Ethylene and Salicylic Acid Signaling Pathways in Rice Roots

2011 ◽  
Vol 52 (9) ◽  
pp. 1686-1696 ◽  
Author(s):  
Kaoru Takeuchi ◽  
Atsuko Gyohda ◽  
Makiko Tominaga ◽  
Madoka Kawakatsu ◽  
Atsushi Hatakeyama ◽  
...  
PLoS ONE ◽  
2016 ◽  
Vol 11 (6) ◽  
pp. e0157168 ◽  
Author(s):  
Laia Armengot ◽  
Eleonora Caldarella ◽  
Maria Mar Marquès-Bueno ◽  
M. Carmen Martínez

2003 ◽  
Vol 16 (2) ◽  
pp. 141-148 ◽  
Author(s):  
C. D. Smart ◽  
K. L. Myers ◽  
S. Restrepo ◽  
G. B. Martin ◽  
W. E. Fry

We compared tomato defense responses to Phytophthora infestans in highly compatible and partially compatible interactions. The highly compatible phenotype was achieved with a tomato-specialized isolate of P. infestans, whereas the partially compatible phenotype was achieved with a nonspecialized isolate. As expected, there was induction of the hypersensitive response (HR) earlier during the partially compatible interaction. However, contrary to our expectation, pathogenesis-related (PR) gene expression was not stimulated sooner in the partially compatible interaction. While the level of PR gene expression was quite similar in the two interactions, the LeDES gene (which encodes an enzyme necessary for the production of divinyl ethers) was expressed at a much higher level in the partially compatible interaction at 48 h after inoculation. Host reaction to the different pathogen genotypes was not altered (compared with wild type) in mutant tomatoes that were ethylene-insensitive (Never-ripe) or those with reduced ability to accumulate jasmonic acid (def-1). Similarly, host reaction was not altered in NahG transgenic tomatoes unable to accumulate salicylic acid. These combined data indicate that partial resistance in tomato to P. infestans is independent of ethylene, jasmonic acid, and salicylic acid signaling pathways.


Amino Acids ◽  
2010 ◽  
Vol 40 (5) ◽  
pp. 1473-1484 ◽  
Author(s):  
Jiugeng Chen ◽  
Yueqin Zhang ◽  
Cuiping Wang ◽  
Weitao Lü ◽  
Jing Bo Jin ◽  
...  

Author(s):  
José A. Hernández ◽  
Pedro Diaz-Vivancos ◽  
Gregorio Barba-Espín ◽  
María José Clemente-Moreno

2018 ◽  
Vol 116 (2) ◽  
pp. 490-495 ◽  
Author(s):  
Hong-Xing Xu ◽  
Li-Xin Qian ◽  
Xing-Wei Wang ◽  
Ruo-Xuan Shao ◽  
Yue Hong ◽  
...  

Phloem-feeding insects feed on plant phloem using their stylets. While ingesting phloem sap, these insects secrete saliva to circumvent plant defenses. Previous studies have shown that, to facilitate their feeding, many phloem-feeding insects can elicit the salicylic acid- (SA-) signaling pathway and thus suppress effective jasmonic acid defenses. However, the molecular basis for the regulation of the plant's defense by phloem-feeding insects remains largely unknown. Here, we show that Bt56, a whitefly-secreted low molecular weight salivary protein, is highly expressed in the whitefly primary salivary gland and is delivered into host plants during feeding. Overexpression of the Bt56 gene in planta promotes susceptibility of tobacco to the whitefly and elicits the SA-signaling pathway. In contrast, silencing the whitefly Bt56 gene significantly decreases whitefly performance on host plants and interrupts whitefly phloem feeding with whiteflies losing the ability to activate the SA pathway. Protein-protein interaction assays show that the Bt56 protein directly interacts with a tobacco KNOTTED 1-like homeobox transcription factor that decreases whitefly performance and suppresses whitefly-induced SA accumulation. The Bt56 orthologous genes are highly conserved but differentially expressed in different species of whiteflies. In conclusion, Bt56 is a key salivary effector that promotes whitefly performance by eliciting salicylic acid-signaling pathway.


2016 ◽  
Vol 7 ◽  
Author(s):  
Hua Lu ◽  
Jean T. Greenberg ◽  
Loreto Holuigue

Sign in / Sign up

Export Citation Format

Share Document