pr gene expression
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 4)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 9 (6) ◽  
pp. 1217
Author(s):  
Aggeliki Andreadelli ◽  
Spyros Petrakis ◽  
Antiopi Tsoureki ◽  
George Tsiolas ◽  
Sofia Michailidou ◽  
...  

Recently, metal oxides and magnesium hydroxide nanoparticles (NPs) with high surface-to-volume ratios were shown to possess antibacterial properties with applications in biomedicine and agriculture. To assess recent observations from field trials on tomatoes showing resistance to pathogen attacks, porous micron-scale particles composed of nano-grains of MgO were hydrated and sprayed on the leaves of healthy tomato (Solanum lycopersicum) plants in a 20-day program. The results showed that the spray induced (a) a modest and selective stress gene response that was consistent with the absence of phytotoxicity and the production of salicylic acid as a signalling response to pathogens; (b) a shift of the phylloplane microbiota from near 100% dominance by Gram (−) bacteria, leaving extremophiles and cyanobacteria to cover the void; and (c) a response of the fungal leaf phylloplane that showed that the leaf epiphytome was unchanged but the fungal load was reduced by about 70%. The direct microbiome changes together with the low level priming of the plant’s immune system may explain the previously observed resistance to pathogen assaults in field tomato plants sprayed with the same hydrated porous micron-scale particles.


2020 ◽  
Vol 96 (7) ◽  
Author(s):  
Coco Koedooder ◽  
Rémy Van Geersdaële ◽  
Audrey Guéneuguès ◽  
François-Yves Bouget ◽  
Ingrid Obernosterer ◽  
...  

ABSTRACT Iron (Fe) limitation is known to affect heterotrophic bacteria within the respiratory electron transport chain, therefore strongly impacting the overall intracellular energy production. We investigated whether the gene expression pattern of the light-sensitive proton pump, proteorhodopsin (PR), is influenced by varying light, carbon and Fe concentrations in the marine bacterium Photobacterium angustum S14 and whether PR can alleviate the physiological processes associated with Fe starvation. Our results show that the gene expression of PR increases as cells enter the stationary phase, irrespective of Fe-replete or Fe-limiting conditions. This upregulation is coupled to a reduction in cell size, indicating that PR gene regulation is associated with a specific starvation-stress response. We provide experimental evidence that PR gene expression does not result in an increased growth rate, cell abundance, enhanced survival or ATP concentration within the cell in either Fe-replete or Fe-limiting conditions. However, independent of PR gene expression, the presence of light did influence bacterial growth rates and maximum cell abundances under varying Fe regimes. Our observations support previous results indicating that PR phototrophy seems to play an important role within the stationary phase for several members of the Vibrionaceae family, but that the exact role of PR in Fe limitation remains to be further explored.


2020 ◽  
Vol 110 (4) ◽  
pp. 873-880 ◽  
Author(s):  
Xinxin Hou ◽  
Jun Cui ◽  
Weiwei Liu ◽  
Ning Jiang ◽  
Xiaoxu Zhou ◽  
...  

Our previous study has indicated that a long noncoding RNA (lncRNA), lncRNA39026, can be responsive to Phytophthora infestans infection. However, the function and regulation mechanism of lncRNA39026 during tomato resistance to P. infestans are unknown. In this study, an lncRNA39026 sequence was cloned from tomato Zaofen No. 2, and this sequence contained an endogenous target mimicry for miR168a, which might suppress the expression of miR168a. LncRNA39026 was strongly downregulated at 3 h in the tomato plants infected with P. infestans, and its expression level displayed a negative correlation with the expression level of miR168a and a positive correlation with the expression levels of SlAGO1 genes (target gene of miR168a) upon P. infestans infection. Tomato plants in which lncRNA39026 was overexpressed displayed enhanced resistance to P. infestans, decreased level of miR168a, and increased level of SlAGO1, whereas the resistance was impaired, level of miR168a was increased, and level of SlAGO1 was decreased after lncRNA39026 silencing. In addition, lncRNA39026 could also induce the expression of pathogenesis-related (PR) genes, as shown by increased and decreased expression levels of PR genes in tomato plants with overexpressed and silenced lncRNA39026, respectively. The result demonstrated that lncRNA39026 might function to decoy miR168a and affect the expression of PR genes in tomato plants, increasing resistance to disease.


Agronomy ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 2 ◽  
Author(s):  
Nur Akbar Arofatullah ◽  
Morifumi Hasegawa ◽  
Sayuri Tanabata ◽  
Isao Ogiwara ◽  
Tatsuo Sato

*Abstract: We investigated the role of heat shock transcription factors (Hsfs) during induction of defense response by heat-shock treatment (HST) in tomato. Leaf disease symptoms were significantly reduced at 12 and 24 h after HST, consistent with upregulation of pathogenesis-related (PR) genes PR1a2 and PR1b1 peaking at 24 h after treatment. These genes were upregulated at the treatment application site, but not in untreated leaves. In contrast to HST, inoculation of the first leaf induced systemic upregulation of acidic PR genes in uninoculated second leaves. Furthermore, heat shock element motifs were found in upstream regions of PR1a2, PR1b1, Chitinase 3, Chitinase 9, Glucanase A, and Glucanase B genes. Upregulation of HsfA2 and HsfB1 peaked at 6 h after HST, 6 h earlier than salicylic acid accumulation. Foliar spray of heat shock protein 90 (Hsp90) inhibitor geldanamycin (GDA) induced PR gene expression comparable to that after HST. PR gene expression and defense response against Pseudomonas syringae pv. tomato (Pst) decreased when combining HST with Hsfs inhibitor KRIBB11. The Hsfs and PR gene expression induced by heat or GDA, together with the suppression of heat shock-induced resistance (HSIR) against Pst by KRIBB11, suggested a direct contribution of Hsfs to HSIR regulation in tomato.


2015 ◽  
Vol 96 (6) ◽  
pp. 2018-2024 ◽  
Author(s):  
Arturo Duarte-Sierra ◽  
Emmanuel Aispuro-Hernández ◽  
Irasema Vargas-Arispuro ◽  
María A Islas-Osuna ◽  
Gustavo A González-Aguilar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document