scholarly journals Partial co-option of the appendage patterning pathway in the development of abdominal appendages in the sepsid fly Themira biloba

2009 ◽  
Vol 219 (11-12) ◽  
pp. 577-587 ◽  
Author(s):  
Julia H. Bowsher ◽  
H. Frederik Nijhout
1878 ◽  
Vol 169 ◽  
pp. 505-521 ◽  

The following paper contains an account of observations on the development of the species Cymothoa œstroides and C . parallela of Milne Edwards; but the forms of the young seem to show that several species are really included under these two names. In the early stages of development the only observable difference that exists between the embryos is one of size, but in the later stages they differ very markedly from each other in their external characters. From adult individuals answering the description of C . œstroides I have obtained four varieties of embryos: two with long antennae and two with short.* In the two former the first pair of antennae are but slightly longer than the head, while the second pair are longer than the body; the eyes are small. In one of the varieties thus characterised the abdominal appendages are fringed with long hairs (fig. 20), and in the other they are smooth.


1981 ◽  
Vol 90 (1) ◽  
pp. 85-100
Author(s):  
CHARLES H. PAGE

Postural extensions of the abdomen of the crayfish, Procambarus clarkii, could be evoked by mechanical stimulation of a single thoracic leg. Movement of a single leg joint was sufficient to initiate an extension response. Vigorous abdominal extensions were initiated either by depression of the whole leg (WLD) or by flexion of the mero-carpal joint (MCF). Weaker extension responses were obtained by depression of the thoracic-coxal and coxo-basal joints. Similar stimulation of the chelipeds did not elicit an abdominal extension response. Single-frame analysis of motion pictures of crayfish responding to WLD or MCF stimulation of a 2nd thoracic leg showed that the responses evoked by the two different stimulus situations were nearly identical. They differed principally in the responses of the leg located contralateral to the stimulated leg. Movements of most of the cephalic, thoracic and abdominal appendages accompanied the abdominal extension response. Only the eyes remained stationary throughout the response. The mean values of the latencies for the initiation of appendage movement ranged from 125 to 204 ma; abdominal movement had a mean latency of about 220 ms. The abdominal extension reflex resulted from the activity of the tonic superficial extensor muscles. The deep phasic extensor muscles were silent during the response. The mean latencies for the initiation of superficial extensor muscle activity by WLD and MCF stimulation were 53·7 and 50·0 ms respectively.


Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 384
Author(s):  
Amanda N. Cass ◽  
Ashley Elias ◽  
Madeline L. Fudala ◽  
Benjamin D. Knick ◽  
Marcus C. Davis

The transformation of paired fins into tetrapod limbs is one of the most intensively scrutinized events in animal evolution. Early anatomical and embryological datasets identified distinctive morphological regions within the appendage and posed hypotheses about how the loss, gain, and transformation of these regions could explain the observed patterns of both extant and fossil appendage diversity. These hypotheses have been put to the test by our growing understanding of patterning mechanisms that regulate formation of the appendage axes, comparisons of gene expression data from an array of phylogenetically informative taxa, and increasingly sophisticated and elegant experiments leveraging the latest molecular approaches. Together, these data demonstrate the remarkable conservation of developmental mechanisms, even across phylogenetically and morphologically disparate taxa, as well as raising new questions about the way we view homology, evolutionary novelty, and the often non-linear connection between morphology and gene expression. In this review, we present historical hypotheses regarding paired fin evolution and limb origins, summarize key aspects of central appendage patterning mechanisms in model and non-model species, address how modern comparative developmental data interface with our understanding of appendage anatomy, and highlight new approaches that promise to provide new insight into these well-traveled questions.


1938 ◽  
Vol s2-81 (321) ◽  
pp. 127-150
Author(s):  
A. E. NEEDHAM

1. In the female Asellus aquaticus it is the first pair of pleopods which is missing and not the second pair, as was usually held. This condition is the result of an inhibition on the development of the last thoracic and first abdominal segments in later brood-pouch stages, an inhibition which is only temporary in the last thoracic segment and in the first abdominal segment of the male. 2. The resemblance between the second abdominal appendages in the female and the first pair of the male is therefore purely convergent. 3. The strong probability that the same condition holds throughout the sub-order Asellota is supported bj a comparison of adult morphology, and should be verified by embryological study. It is more usual in Crustacea for appendages to be lost at the end than in the middle of a series. 4. The structure of the copulatory apparatus of the adult male Asellus is extremely complex, and apparently closely adapted to its mode of function. In contrast the female apparatus is of the simplest. 5. Points of evolutionary and genetical interest are raised by the condition of these appendages in the two sexes.


2019 ◽  
Vol 286 (1914) ◽  
pp. 20191571 ◽  
Author(s):  
Natalie Turner ◽  
Deimante Mikalauskaite ◽  
Krista Barone ◽  
Kathleen Flaherty ◽  
Gayani Senevirathne ◽  
...  

Appendage patterning and evolution have been active areas of inquiry for the past two centuries. While most work has centred on the skeleton, particularly that of amniotes, the evolutionary origins and molecular underpinnings of the neuromuscular diversity of fish appendages have remained enigmatic. The fundamental pattern of segmentation in amniotes, for example, is that all muscle precursors and spinal nerves enter either the paired appendages or body wall at the same spinal level. The condition in finned vertebrates is not understood. To address this gap in knowledge, we investigated the development of muscles and nerves in unpaired and paired fins of skates and compared them to those of chain catsharks. During skate and shark embryogenesis, cell populations of muscle precursors and associated spinal nerves at the same axial level contribute to both appendages and body wall, perhaps representing an ancestral condition of gnathostome appendicular neuromuscular systems. Remarkably in skates, this neuromuscular bifurcation as well as colinear Hox expression extend posteriorly to pattern a broad paired fin domain. In addition, we identified migratory muscle precursors (MMPs), which are known to develop into paired appendage muscles with Pax3 and Lbx1 gene expression, in the dorsal fins of skates. Our results suggest that muscles of paired fins have evolved via redeployment of the genetic programme of MMPs that were already involved in dorsal fin development. Appendicular neuromuscular systems most likely have emerged as side branches of body wall neuromusculature and have been modified to adapt to distinct aquatic and terrestrial habitats.


2020 ◽  
Vol 121 ◽  
pp. 103369
Author(s):  
Ru Zhang ◽  
Zhongjie Zhang ◽  
Yongping Huang ◽  
Airong Qian ◽  
Anjiang Tan

2017 ◽  
Vol 429 (2) ◽  
pp. 409-419 ◽  
Author(s):  
Elena F. Boer ◽  
Hannah F. Van Hollebeke ◽  
Michael D. Shapiro

Sign in / Sign up

Export Citation Format

Share Document