Chlamydia trachomatis-infected macrophages induce apoptosis of activated T cells by secretion of tumor necrosis factor-? in vitro

2004 ◽  
Vol 193 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Michael C. Jendro ◽  
Frederik Fingerle ◽  
Tobias Deutsch ◽  
Andrea Liese ◽  
Lars K�hler ◽  
...  
2000 ◽  
Vol 68 (3) ◽  
pp. 1428-1434 ◽  
Author(s):  
Michelle Nashleanas ◽  
Phillip Scott

ABSTRACT The ability to activate macrophages in vitro for nitric oxide production and killing of Leishmania major parasites is dependent on tumor necrosis factor, although L. major-infected mice lacking the TNF receptor p55 (TNFRp55−/− mice) or both the TNFRp55 and TNFRp75 (TNFRp55p75−/− mice) are able to produce NO in vivo and eliminate the parasites. Here we report that activated T cells cocultured with macrophages results in TNFR-independent activation sufficient to control parasites and that both CD40/CD40L and LFA-1 contribute to T-cell-mediated macrophage activation. Thus, anti-CD3-stimulated T cells activated TNFR-deficient macrophages, while T cells from CD40L−/− mice were partially defective in triggering NO production by TNFRp55p75−/− macrophages. Moreover, in the presence of gamma interferon, anti-CD40 monoclonal antibody (MAb) activated TNFR-deficient macrophages. Finally, MAb blockade of LFA-1 completely inhibited macrophage NO production. Our data indicate that T cells can activate macrophages in the absence of TNF, thus providing a mechanism for how TNFR-deficient mice can control intracellular pathogens.


1997 ◽  
Vol 186 (12) ◽  
pp. 2075-2080 ◽  
Author(s):  
Brian R. Wong ◽  
Régis Josien ◽  
Soo Young Lee ◽  
Birthe Sauter ◽  
Hong-Li Li ◽  
...  

TRANCE (tumor necrosis factor [TNF]–related activation-induced cytokine) is a new member of the TNF family that is induced upon T cell receptor engagement and activates c-Jun N-terminal kinase (JNK) after interaction with its putative receptor (TRANCE-R). In addition, TRANCE expression is restricted to lymphoid organs and T cells. Here, we show that high levels of TRANCE-R are detected on mature dendritic cells (DCs) but not on freshly isolated B cells, T cells, or macrophages. Signaling by TRANCE-R appears to be dependent on TNF receptor–associated factor 2 (TRAF2), since JNK induction is impaired in cells from transgenic mice overexpressing a dominant negative TRAF2 protein. TRANCE inhibits apoptosis of mouse bone marrow–derived DCs and human monocyte-derived DCs in vitro. The resulting increase in DC survival is accompanied by a proportional increase in DC-mediated T cell proliferation in a mixed leukocyte reaction. TRANCE upregulates Bcl-xL expression, suggesting a potential mechanism for enhanced DC survival. TRANCE does not induce the proliferation of or increase the survival of T or B cells. Therefore, TRANCE is a new DC-restricted survival factor that mediates T cell–DC communication and may provide a tool to selectively enhance DC activity.


1999 ◽  
Vol 11 (9) ◽  
pp. 1479-1489 ◽  
Author(s):  
Matilde Ramírez ◽  
Neus Fernández-Troy ◽  
Maria Buxadé ◽  
Ricardo P. Casaroli-Marano ◽  
Daniel Benítez ◽  
...  

1994 ◽  
Vol 180 (6) ◽  
pp. 2227-2237 ◽  
Author(s):  
N Karin ◽  
D J Mitchell ◽  
S Brocke ◽  
N Ling ◽  
L Steinman

An immunodominant epitope of myelin basic protein (MBP), VHFFKNIVTPRTP (p87-99), is a major target of T cells in lesions of multiple sclerosis (MS) and in experimental allergic encephalomyelitis (EAE). T cells found in EAE lesions bear the same amino acids in the third complementary determining region of the T cell receptor (TCR) as those found in MS lesions. We analyzed the trimolecular interactions between MBP p87-99, class II major histocompatibility complex (MHC), and TCR, and designed soluble inhibitors for therapy. F, N, I, and V at positions 90, 92, 93, and 94 interact with MHC, whereas K, T, and P at positions 91, 95, and 96 interact with TCR. The peptides, p87-99[95T > A] and p87-99[96P > A] could compete more effectively with p87-99 for binding to MHC and could antagonize the in vitro response to T cells to p87-99 more effectively than p87-99[91K > A]. However, only p87-99[91K > A] prevented and reversed EAE, indicating that the extent of MHC or TCR competition does not predict success in treating EAE. To elucidate the mechanism of inhibition of EAE, draining lymph node cells from rats immunized with the native peptide alone or together with each of the three TCR antagonists were challenged in vitro with p87-99. Administration of p87-99[91K > A], but not p87-99 [95T > A] or p87-99[96P > A], reduced the production of tumor necrosis factor (TNF)- alpha and interferon (IFN) gamma. IFN-gamma and TNF-alpha are two cytokines that are critical in the pathogenesis of EAE and MS.


1999 ◽  
Vol 190 (11) ◽  
pp. 1697-1710 ◽  
Author(s):  
Fabienne Mackay ◽  
Stephen A. Woodcock ◽  
Pornsri Lawton ◽  
Christine Ambrose ◽  
Manfred Baetscher ◽  
...  

The cause of many autoimmune and inflammatory diseases is unresolved, although dysregulated production of tumor necrosis factor (TNF) family members appears to be important in many cases. BAFF, a new member of the TNF family, binds to B cells and costimulates their growth in vitro. Mice transgenic for BAFF have vastly increased numbers of mature B and effector T cells, and develop autoimmune-like manifestations such as the presence of high levels of rheumatoid factors, circulating immune complexes, anti–DNA autoantibodies, and immunoglobulin deposition in the kidneys. This phenotype is reminiscent of certain human autoimmune disorders and suggests that dysregulation of BAFF expression may be a critical element in the chain of events leading to autoimmunity.


Sign in / Sign up

Export Citation Format

Share Document