Mutations in the Schizosaccharomyces pombe heat shock factor that differentially affect responses to heat and cadmium stress

1999 ◽  
Vol 261 (1) ◽  
pp. 161-169 ◽  
Author(s):  
K. A. Saltsman ◽  
H. L. Prentice ◽  
R. E. Kingston
1993 ◽  
Vol 13 (2) ◽  
pp. 749-761
Author(s):  
G J Gallo ◽  
H Prentice ◽  
R E Kingston

Schizosaccharomyces pombe is becoming an increasingly useful organism for the study of cellular processes, since in certain respects, such as the cell cycle and splicing, it is similar to metazoans. Previous biochemical studies have shown that the DNA binding ability of S. pombe heat shock factor (HSF) is fully induced only under stressed conditions, in a manner similar to that of Drosophila melanogaster and humans but differing from the constitutive binding by HSF in the budding yeasts. We report the isolation of the cDNA and gene for the HSF from S. pombe. S. pombe HSF has a domain structure that is more closely related to the structure of human and D. melanogaster HSFs than to the structure of the budding yeast HSFs, further arguing that regulation of HSF in S. pombe is likely to reflect regulation in metazoans. Surprisingly, the S. pombe HSF gene is required for growth at normal temperatures. We show that the S. pombe HSF gene can be replaced by the D. melanogaster HSF gene and that strains containing either of these genes behave similarly to transiently heat-shocked strains with respect to viability and the level of heat-induced transcripts from heat shock promoters. Strains containing the D. melanogaster HSF gene, however, have lower growth rates and show altered morphology at normal growth temperatures. These data demonstrate the functional conservation of domains of HSF that are required for response to heat shock. They further suggest a general role for HSF in growth of eukaryotic cells under normal (nonstressed) growth conditions.


1991 ◽  
Vol 11 (1) ◽  
pp. 281-288 ◽  
Author(s):  
G J Gallo ◽  
T J Schuetz ◽  
R E Kingston

The heat shock response appears to be universal. All eucaryotes studied encode a protein, heat shock factor (HSF), that is believed to regulate transcription of heat shock genes. This protein binds to a regulatory sequence, the heat shock element, that is absolutely conserved among eucaryotes. We report here the identification of HSF in the fission yeast Schizosaccharomyces pombe. HSF binding was not observed in extracts from normally growing S. pombe (28 degrees C) but was detected in increasing amounts as the temperature of heat shock increased between 39 and 45 degrees C. This regulation is in contrast to that observed in Saccharomyces cerevisiae, in which HSF binding is detectable at both normal and heat shock temperatures. The S. pombe factor bound specifically to the heat shock element, as judged by methylation interference and DNase I protection analysis. The induction of S. pombe HSF was not inhibited by cycloheximide, suggesting that induction occurs posttranslationally, and the induced factor was shown to be phosphorylated. S. pombe HSF was purified to near homogeneity and was shown to have an apparent mobility of approximately 108 kDa. Since heat-induced DNA binding by HSF had previously been demonstrated only in metazoans, the conservation of heat-induced DNA binding by HSF among S. pombe and metazoans suggests that this mode of regulation is evolutionarily ancient.


1991 ◽  
Vol 11 (1) ◽  
pp. 281-288
Author(s):  
G J Gallo ◽  
T J Schuetz ◽  
R E Kingston

The heat shock response appears to be universal. All eucaryotes studied encode a protein, heat shock factor (HSF), that is believed to regulate transcription of heat shock genes. This protein binds to a regulatory sequence, the heat shock element, that is absolutely conserved among eucaryotes. We report here the identification of HSF in the fission yeast Schizosaccharomyces pombe. HSF binding was not observed in extracts from normally growing S. pombe (28 degrees C) but was detected in increasing amounts as the temperature of heat shock increased between 39 and 45 degrees C. This regulation is in contrast to that observed in Saccharomyces cerevisiae, in which HSF binding is detectable at both normal and heat shock temperatures. The S. pombe factor bound specifically to the heat shock element, as judged by methylation interference and DNase I protection analysis. The induction of S. pombe HSF was not inhibited by cycloheximide, suggesting that induction occurs posttranslationally, and the induced factor was shown to be phosphorylated. S. pombe HSF was purified to near homogeneity and was shown to have an apparent mobility of approximately 108 kDa. Since heat-induced DNA binding by HSF had previously been demonstrated only in metazoans, the conservation of heat-induced DNA binding by HSF among S. pombe and metazoans suggests that this mode of regulation is evolutionarily ancient.


1993 ◽  
Vol 13 (2) ◽  
pp. 749-761 ◽  
Author(s):  
G J Gallo ◽  
H Prentice ◽  
R E Kingston

Schizosaccharomyces pombe is becoming an increasingly useful organism for the study of cellular processes, since in certain respects, such as the cell cycle and splicing, it is similar to metazoans. Previous biochemical studies have shown that the DNA binding ability of S. pombe heat shock factor (HSF) is fully induced only under stressed conditions, in a manner similar to that of Drosophila melanogaster and humans but differing from the constitutive binding by HSF in the budding yeasts. We report the isolation of the cDNA and gene for the HSF from S. pombe. S. pombe HSF has a domain structure that is more closely related to the structure of human and D. melanogaster HSFs than to the structure of the budding yeast HSFs, further arguing that regulation of HSF in S. pombe is likely to reflect regulation in metazoans. Surprisingly, the S. pombe HSF gene is required for growth at normal temperatures. We show that the S. pombe HSF gene can be replaced by the D. melanogaster HSF gene and that strains containing either of these genes behave similarly to transiently heat-shocked strains with respect to viability and the level of heat-induced transcripts from heat shock promoters. Strains containing the D. melanogaster HSF gene, however, have lower growth rates and show altered morphology at normal growth temperatures. These data demonstrate the functional conservation of domains of HSF that are required for response to heat shock. They further suggest a general role for HSF in growth of eukaryotic cells under normal (nonstressed) growth conditions.


Sign in / Sign up

Export Citation Format

Share Document