scholarly journals Correction to: Genetic etiology of non-syndromic hearing loss in Latin America

2022 ◽  
Author(s):  
Karina Lezirovitz ◽  
Regina Célia Mingroni-Netto
Medicina ◽  
2020 ◽  
Vol 56 (9) ◽  
pp. 471
Author(s):  
Nina Božanić Urbančič ◽  
Saba Battelino ◽  
Tine Tesovnik ◽  
Katarina Trebušak Podkrajšek

Hearing loss is one of the most common sensory deficits. It carries severe medical and social consequences, and therefore, universal newborn hearing screening was introduced at the beginning of this century. Affected patients can have hearing loss as a solitary deficit (non-syndromic hearing loss) or have other organs affected as well (syndromic hearing loss). In around 60% of cases, congenital hearing loss has a genetic etiology, where disease-causing variants can change any component of the hearing pathway. Genetic testing is usually performed by sequencing. Sanger sequencing enables analysis of the limited number of genes strictly preselected according to the clinical presentation and the prevalence among the hearing loss patients. In contrast, next-generation sequencing allows broad analysis of the numerous genes related to hearing loss, exome, or the whole genome. Identification of the genetic etiology is possible, and it makes the foundation for the genetic counselling in the family. Furthermore, it enables the identification of the comorbidities that may need a referral for specialty care, allows early treatment, helps with identification of candidates for cochlear implant, appropriate aversive/protective management, and is the foundation for the development of novel therapeutic options.


2004 ◽  
Vol 124 (0) ◽  
pp. 29-34 ◽  
Author(s):  
F. Gualandi ◽  
A. Ravani ◽  
A. Berto ◽  
S. Burdo ◽  
P. Trevisi ◽  
...  

2021 ◽  
Author(s):  
Abdullah Al Mutery ◽  
Mona Mahfood ◽  
Jihen Chouchen ◽  
Abdelaziz Tlili

2021 ◽  
Vol 22 (12) ◽  
pp. 6497
Author(s):  
Anna Ghilardi ◽  
Alberto Diana ◽  
Renato Bacchetta ◽  
Nadia Santo ◽  
Miriam Ascagni ◽  
...  

The last decade has witnessed the identification of several families affected by hereditary non-syndromic hearing loss (NSHL) caused by mutations in the SMPX gene and the loss of function has been suggested as the underlying mechanism. In the attempt to confirm this hypothesis we generated an Smpx-deficient zebrafish model, pointing out its crucial role in proper inner ear development. Indeed, a marked decrease in the number of kinocilia together with structural alterations of the stereocilia and the kinocilium itself in the hair cells of the inner ear were observed. We also report the impairment of the mechanotransduction by the hair cells, making SMPX a potential key player in the construction of the machinery necessary for sound detection. This wealth of evidence provides the first possible explanation for hearing loss in SMPX-mutated patients. Additionally, we observed a clear muscular phenotype consisting of the defective organization and functioning of muscle fibers, strongly suggesting a potential role for the protein in the development of muscle fibers. This piece of evidence highlights the need for more in-depth analyses in search for possible correlations between SMPX mutations and muscular disorders in humans, thus potentially turning this non-syndromic hearing loss-associated gene into the genetic cause of dysfunctions characterized by more than one symptom, making SMPX a novel syndromic gene.


Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1237
Author(s):  
Anna Morgan ◽  
Stefania Lenarduzzi ◽  
Beatrice Spedicati ◽  
Elisabetta Cattaruzzi ◽  
Flora Maria Murru ◽  
...  

Hearing loss (HL), both syndromic (SHL) and non-syndromic (NSHL), is the most common sensory disorder, affecting ~460 million people worldwide. More than 50% of the congenital/childhood cases are attributable to genetic causes, highlighting the importance of genetic testing in this class of disorders. Here we applied a multi-step strategy for the molecular diagnosis of HL in 125 patients, which included: (1) an accurate clinical evaluation, (2) the analysis of GJB2, GJB6, and MT-RNR1 genes, (3) the evaluation STRC-CATSPER2 and OTOA deletions via Multiplex Ligation Probe Amplification (MLPA), (4) Whole Exome Sequencing (WES) in patients negative to steps 2 and 3. Our approach led to the characterization of 50% of the NSHL cases, confirming both the relevant role of the GJB2 (20% of cases) and STRC deletions (6% of cases), and the high genetic heterogeneity of NSHL. Moreover, due to the genetic findings, 4% of apparent NSHL patients have been re-diagnosed as SHL. Finally, WES characterized 86% of SHL patients, supporting the role of already know disease-genes. Overall, our approach proved to be efficient in identifying the molecular cause of HL, providing essential information for the patients’ future management.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Somayeh Khatami ◽  
Masomeh Askari ◽  
Fatemeh Bahreini ◽  
Morteza Hashemzadeh-Chaleshtori ◽  
Saeed Hematian ◽  
...  

Abstract Background Clinical genetic diagnosis of non-syndromic hearing loss (NSHL) is quite challenging. With regard to its high heterogeneity as well as large size of some genes, it is also really difficult to detect causative mutations using traditional approaches. One of the recent technologies called whole-exome sequencing (WES) has been thus developed in this domain to remove the limitations of conventional methods. Methods This study was a report on a research study of two unrelated pedigrees with multiple affected cases of hearing loss (HL). Accordingly, clinical evaluations and genetic analysis were performed in both families. Results The results of WES data analysis to uncover autosomal recessive non-syndromic hearing loss (ARNSHL) disease-causing variants was reported in the present study. Initial analysis identified two novel variants of MYO15A i.e. c.T6442A:p.W2148R and c.10504dupT:p.C3502Lfs*15 correspondingly which were later confirmed by Sanger validations and segregation analyses. According to online prediction tools, both identified variants seemed to have damaging effects. Conclusion In this study, whole exome sequencing were used as a first approach strategy to identify the two novel variants in MYO15A in two Iranian families with ARNSHL.


2018 ◽  
Vol 27 (3) ◽  
pp. 466-474 ◽  
Author(s):  
Mariateresa Di Stazio ◽  
Chiara Collesi ◽  
Diego Vozzi ◽  
Wei Liu ◽  
Mike Myers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document