scholarly journals Greedy routing in small-world networks with power-law degrees

2014 ◽  
Vol 27 (4) ◽  
pp. 231-253 ◽  
Author(s):  
Pierre Fraigniaud ◽  
George Giakkoupis
2006 ◽  
Vol 23 (3) ◽  
pp. 746-749 ◽  
Author(s):  
Liu Jian-Guo ◽  
Dang Yan-Zhong ◽  
Wang Zhong-Tuo

2008 ◽  
Vol 19 (12) ◽  
pp. 1809-1820 ◽  
Author(s):  
A. SANTIAGO ◽  
J. P. CÁRDENAS ◽  
M. L. MOURONTE ◽  
V. FELIU ◽  
R. M. BENITO

SDH (Synchronous Digital Hierarchy) is the standard technology for the information transmission in broadband optical networks. Unlike the Internet, SDH networks are strictly planned; rings, meshes, stars, or tree-branches topologies are designed to connect their basic elements. In spite of that, we have found that the SDH network operated by Telefónica in Spain shares remarkable topological properties with other real complex networks empirically analyzed, such as the worldwide web network. In particular, we have found power-law scaling in the degree distribution (P(k) ~ k-γ) and properties of small world networks. Considering real planning directives that take into account geographical and technological variables, we propose an ad hoc computational model that reproduces the aforementioned topological traits observed in the Spanish SDH network.


2008 ◽  
Vol 2008 ◽  
pp. 1-4 ◽  
Author(s):  
J. M. Campuzano ◽  
J. P. Bagrow ◽  
D. ben-Avraham

We study the Kleinberg problem of navigation in small-world networks when the underlying lattice is stretched along a preferred direction. Extensive simulations confirm that maximally efficient navigation is attained when the length r of long-range links is taken from the distribution P(r)∼r−α, when the exponent α is equal to 2, the dimension of the underlying lattice, regardless of the amount of anisotropy, but only in the limit of infinite lattice size, L→∞. For finite size lattices we find an optimal α(L) that depends strongly on L. The convergence to α=2 as L→∞ shows interesting power-law dependence on the anisotropy strength.


2005 ◽  
Author(s):  
Balazs Kozma ◽  
Matthew B. Hastings ◽  
Gyorgy Korniss

2005 ◽  
Vol 95 (1) ◽  
Author(s):  
Balázs Kozma ◽  
Matthew B. Hastings ◽  
G. Korniss

Author(s):  
Stefan Thurner ◽  
Rudolf Hanel ◽  
Peter Klimekl

Understanding the interactions between the components of a system is key to understanding it. In complex systems, interactions are usually not uniform, not isotropic and not homogeneous: each interaction can be specific between elements.Networks are a tool for keeping track of who is interacting with whom, at what strength, when, and in what way. Networks are essential for understanding of the co-evolution and phase diagrams of complex systems. Here we provide a self-contained introduction to the field of network science. We introduce ways of representing and handle networks mathematically and introduce the basic vocabulary and definitions. The notions of random- and complex networks are reviewed as well as the notions of small world networks, simple preferentially grown networks, community detection, and generalized multilayer networks.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ghislain Romaric Meleu ◽  
Paulin Yonta Melatagia

AbstractUsing the headers of scientific papers, we have built multilayer networks of entities involved in research namely: authors, laboratories, and institutions. We have analyzed some properties of such networks built from data extracted from the HAL archives and found that the network at each layer is a small-world network with power law distribution. In order to simulate such co-publication network, we propose a multilayer network generation model based on the formation of cliques at each layer and the affiliation of each new node to the higher layers. The clique is built from new and existing nodes selected using preferential attachment. We also show that, the degree distribution of generated layers follows a power law. From the simulations of our model, we show that the generated multilayer networks reproduce the studied properties of co-publication networks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marios Papachristou

AbstractIn this paper we devise a generative random network model with core–periphery properties whose core nodes act as sublinear dominators, that is, if the network has n nodes, the core has size o(n) and dominates the entire network. We show that instances generated by this model exhibit power law degree distributions, and incorporates small-world phenomena. We also fit our model in a variety of real-world networks.


2021 ◽  
Vol 144 ◽  
pp. 110745
Author(s):  
Ankit Mishra ◽  
Jayendra N. Bandyopadhyay ◽  
Sarika Jalan

Sign in / Sign up

Export Citation Format

Share Document