Production of green biocellulose nanofibers by Gluconacetobacter xylinus through utilizing the renewable resources of agriculture residues

2013 ◽  
Vol 36 (11) ◽  
pp. 1735-1743 ◽  
Author(s):  
Wahib Al-Abdallah ◽  
Yaser Dahman
2021 ◽  
Author(s):  
Hadeel A. Nedaff

Production of alternative non-fossil biofuels based on renewable resources has been the focus of research in the past few decades due to its environmental and economical advantages. The current study focuses on testing two Clostridia strains towards production of butanol. The work was performed in three parts: the first part includes introducing C acetobutylicum ATCC 4259 for butanol production and identifying the proper working conditions for this strain. The following part includes extending investigation of production to examine C. beijerinckiiBA101 and compare with results obtained from C. acetobutylicum. In the last part, an optimization study was conducted on a presently derived mathematical model in order to predict the best sugar composition in the feedstock for maximum production of butanol. Results showed that the agriculture residues are potential biomass resource for biofuel industry sin both Clostridia strains were successfully able to utilize all types of agricultural sugars including hexose and pentose. However, using C. beijerinkckii resulted in 53% higher butanol concentration than using introduced C. acetobutylicum. The yield was fairly comparable, while high acid accumulation found when using C. acetobutylicum made this strain inapplicable to anaerobic batch fermentation without effective system of pH control.


2021 ◽  
Author(s):  
Minakshi Goyat

Bacterial Cellulose (BC) was synthesized through utilizing algae as a sustainable and renewable carbon source in comparison with agriculture residues (i.e., Wheat Straws (WS)). BC was produced in separate hydrolysis and fermentation method (SHF) using Gluconacetobacter xylinum (G.xylinum). Results for the individual and total sugars were analyzed in comparison with corresponding results from WS hydrolysis. Results show that highest total sugars content was obtained with algae samples that were hydrolyzed using enzymes (Cellulase, β-glycosidase, and Xylanase) and produced 27.58 g/L. Similarly, WS hydrolysis under same conditions produced 52.12 g/L. The lowest total sugars production was obtained with algae sample that was hydrolyzed using 1% of acid at 121°C. Produced sugars were utilized in SHF to produce BC, with highest production of 4.86 g/L BC was achieved with algae sample that went through enzymatic hydrolysis. The equivalent production that was obtained from WS hydrolysis was 10.6 g/L Results obtained from individual sugars indicated that among all individual sugars glucose was maximum consumed i.e. 80-85%of glucose sugar was consumed where the lowest was arabinose which was only 50% consumed during fermentation. The lower production of BC using algae compared to WS (approximately half) as algae we used was unprocessed means it had oil content in it. About 30-60% of algae dry weight was utilized for production of oil and rest amount of feedstock was only used for hydrolysis and fermentation.


2021 ◽  
Author(s):  
Hadeel A. Nedaff

Production of alternative non-fossil biofuels based on renewable resources has been the focus of research in the past few decades due to its environmental and economical advantages. The current study focuses on testing two Clostridia strains towards production of butanol. The work was performed in three parts: the first part includes introducing C acetobutylicum ATCC 4259 for butanol production and identifying the proper working conditions for this strain. The following part includes extending investigation of production to examine C. beijerinckiiBA101 and compare with results obtained from C. acetobutylicum. In the last part, an optimization study was conducted on a presently derived mathematical model in order to predict the best sugar composition in the feedstock for maximum production of butanol. Results showed that the agriculture residues are potential biomass resource for biofuel industry sin both Clostridia strains were successfully able to utilize all types of agricultural sugars including hexose and pentose. However, using C. beijerinkckii resulted in 53% higher butanol concentration than using introduced C. acetobutylicum. The yield was fairly comparable, while high acid accumulation found when using C. acetobutylicum made this strain inapplicable to anaerobic batch fermentation without effective system of pH control.


2021 ◽  
Author(s):  
Minakshi Goyat

Bacterial Cellulose (BC) was synthesized through utilizing algae as a sustainable and renewable carbon source in comparison with agriculture residues (i.e., Wheat Straws (WS)). BC was produced in separate hydrolysis and fermentation method (SHF) using Gluconacetobacter xylinum (G.xylinum). Results for the individual and total sugars were analyzed in comparison with corresponding results from WS hydrolysis. Results show that highest total sugars content was obtained with algae samples that were hydrolyzed using enzymes (Cellulase, β-glycosidase, and Xylanase) and produced 27.58 g/L. Similarly, WS hydrolysis under same conditions produced 52.12 g/L. The lowest total sugars production was obtained with algae sample that was hydrolyzed using 1% of acid at 121°C. Produced sugars were utilized in SHF to produce BC, with highest production of 4.86 g/L BC was achieved with algae sample that went through enzymatic hydrolysis. The equivalent production that was obtained from WS hydrolysis was 10.6 g/L Results obtained from individual sugars indicated that among all individual sugars glucose was maximum consumed i.e. 80-85%of glucose sugar was consumed where the lowest was arabinose which was only 50% consumed during fermentation. The lower production of BC using algae compared to WS (approximately half) as algae we used was unprocessed means it had oil content in it. About 30-60% of algae dry weight was utilized for production of oil and rest amount of feedstock was only used for hydrolysis and fermentation.


2019 ◽  
Vol 37 (3) ◽  
pp. 18
Author(s):  
Fernando González Laxe

The globalization of the economy encourages massive population displacements and inevitably generates a cosmopolitization of societies. This leads to concern, misunderstanding and rejection. The most vulnerable social groups in society can perceive the population as intruders and enemies in social competition. Undoubtedly, the extreme spatial instability of fishery resources is among the many factors affecting migration dynamics. Various reasons for the mobility of fishermen are relevant around this concept. These include aspect related to traditions, to the capitalisation of activity, to technological innovations, and to innovation exchanges concerning the location of fish stocks. This article reflects on spatial increase of fishermen’s. The analyse are part of the paradigm of the sustainable management of common renewable resources, in particular fishery resources. It presents three lines of analysis: the reason for mobility; the choice of destination; and are the integration into host units.


Author(s):  
Geoffrey M. Heal ◽  
Graciela Chichilnisky ◽  
Andrea Beltratti

Sign in / Sign up

Export Citation Format

Share Document