scholarly journals Equivalence of Self-similar and Pseudo-self-similar Tiling Spaces in ℝ2

2011 ◽  
Vol 46 (1) ◽  
pp. 1-28
Author(s):  
Betseygail Rand
Keyword(s):  
2012 ◽  
Vol 34 (1) ◽  
pp. 55-94 ◽  
Author(s):  
MARCY BARGE ◽  
CARL OLIMB

AbstractEvery sufficiently regular non-periodic space of tilings of $\mathbb {R}^d$ has at least one pair of distinct tilings that are asymptotic under translation in all the directions of some open $(d-1)$-dimensional hemisphere. If the tiling space comes from a substitution, there is a way of defining a location on such tilings at which asymptoticity ‘starts’. This leads to the definition of the branch locus of the tiling space: this is a subspace of the tiling space, of dimension at most $d-1$, that summarizes the ‘asymptotic in at least a half-space’ behavior in the tiling space. We prove that if a $d$-dimensional self-similar substitution tiling space has a pair of distinct tilings that are asymptotic in a set of directions that contains a closed $(d-1)$-hemisphere in its interior, then the branch locus is a topological invariant of the tiling space. If the tiling space is a two-dimensional self-similar Pisot substitution tiling space, the branch locus has a description as an inverse limit of an expanding Markov map on a zero- or one-dimensional simplicial complex.


2011 ◽  
Vol 31 (6) ◽  
pp. 1745-1783 ◽  
Author(s):  
JAROSLAW KWAPISZ

AbstractWe study abstract self-affine tiling actions, which are an intrinsically defined class of minimal expansive actions of ℝdon a compact space. They include the translation actions on the compact spaces associated to aperiodic repetitive tilings or Delone sets in ℝd. In the self-similar case, we show that the existence of a homeomorphism between tiling spaces implies conjugacy of the actions up to a linear rescaling. We also introduce the general linear group of an (abstract) tiling, prove its discreteness, and show that it is naturally isomorphic with the (pointed) mapping class group of the tiling space. To illustrate our theory, we compute the mapping class group for a five-fold symmetric Penrose tiling.


2006 ◽  
Vol 20 ◽  
pp. 1-4
Author(s):  
A. Nusser
Keyword(s):  

Author(s):  
Irina Strelkovskay ◽  
Irina Solovskaya ◽  
Anastasija Makoganjuk ◽  
Nikolaj Severin

The problem of forecasting self-similar traffic, which is characterized by a considerable number of ripples and the property of long-term dependence, is considered. It is proposed to use the method of spline extrapolation using linear and cubic splines. The results of self-similar traffic prediction were obtained, which will allow to predict the necessary size of the buffer devices of the network nodes in order to avoid congestion in the network and exceed the normative values ​​of QoS quality characteristics. The solution of the problem of self-similar traffic forecasting obtained with the Simulink software package in Matlab environment is considered. A method of extrapolation based on spline functions is developed. The proposed method has several advantages over the known methods, first of all, it is sufficient ease of implementation, low resource intensity and accuracy of prediction, which can be enhanced by the use of quadratic or cubic interpolation spline functions. Using the method of spline extrapolation, the results of self-similar traffic prediction were obtained, which will allow to predict the required volume of buffer devices, thereby avoiding network congestion and exceeding the normative values ​​of QoS quality characteristics. Given that self-similar traffic is characterized by the presence of "bursts" and a long-term dependence between the moments of receipt of applications in this study, given predetermined data to improve the prediction accuracy, it is possible to use extrapolation based on wavelet functions, the so-called wavelet-extrapolation method. Based on the results of traffic forecasting, taking into account the maximum values ​​of network node traffic, you can give practical guidance on how traffic is redistributed across the network. This will balance the load of network objects and increase the efficiency of network equipment.


Sign in / Sign up

Export Citation Format

Share Document