Increasing the critical time step: micro-inertia, inertia penalties and mass scaling

2011 ◽  
Vol 47 (6) ◽  
pp. 657-667 ◽  
Author(s):  
Harm Askes ◽  
Duc C. D. Nguyen ◽  
Andy Tyas
1978 ◽  
Vol 45 (2) ◽  
pp. 371-374 ◽  
Author(s):  
T. J. R. Hughes ◽  
W. K. Liu

A stability analysis is carried out for a new family of implicit-explicit finite-element algorithms. The analysis shows that unconditional stability may be achieved for the implicit finite elements and that the critical time step of the explicit elements governs for the system.


2007 ◽  
Vol 7 (3) ◽  
pp. 227-238 ◽  
Author(s):  
S.H. Razavi ◽  
A. Abolmaali ◽  
M. Ghassemieh

AbstractIn the proposed method, the variation of displacement in each time step is assumed to be a fourth order polynomial in time and its five unknown coefficients are calculated based on: two initial conditions from the previous time step; satisfying the equation of motion at both ends of the time step; and the zero weighted residual within the time step. This method is non-dissipative and its dispersion is considerably less than in other popular methods. The stability of the method shows that the critical time step is more than twice of that for the linear acceleration method and its convergence is of fourth order.


2016 ◽  
Vol 13 (01) ◽  
pp. 1650005 ◽  
Author(s):  
M. Ghassemieh ◽  
A. A. Gholampour ◽  
S. R. Massah

This paper presents a weighted residual method with several weight functions for solving differential equation of motion in nonlinear structural dynamics problems. Order of variation of acceleration is assumed to be quadratic in each time step in which polynomial of displacement would contain five unknown coefficients. Five equations are required for determination of these coefficients in each time step. These equations are obtained from initial conditions, satisfying equation of motions at both ends, and weighted residual integration. In this study, four procedures are considered for weight function to be used in the weighted residual integration as; unit weight function, Petrov–Galerkin’s weight function, least square weight function, and collocation weight function. Due to higher order of acceleration in the proposed method, the results indicate better and more accurate responses. Among the tested functions, the unit weighted function method demonstrated to be non-dissipative and its numerical dispersion showed to be clearly less than the common Newmark’s linear acceleration method. Also critical time step duration in stability investigation for weighted function procedure showed to be larger than the critical time step duration obtained by other methods used in the nonlinear structural dynamics problems.


Sign in / Sign up

Export Citation Format

Share Document