Heartwood extractives and lignin content of different larch species ( Larix sp.) and relationships to brown-rot decay-resistance

Trees ◽  
2004 ◽  
Vol 18 (2) ◽  
pp. 230-236 ◽  
Author(s):  
Notburga Gierlinger ◽  
Dominique Jacques ◽  
Rupert Wimmer ◽  
Luc E. P�ques ◽  
Manfred Schwanninger
Trees ◽  
2004 ◽  
Vol 18 (1) ◽  
pp. 102-108 ◽  
Author(s):  
Notburga Gierlinger ◽  
Dominique Jacques ◽  
Michael Grabner ◽  
Rupert Wimmer ◽  
Manfred Schwanninger ◽  
...  

Holzforschung ◽  
2014 ◽  
Vol 68 (2) ◽  
pp. 239-246 ◽  
Author(s):  
Rebecka Ringman ◽  
Annica Pilgård ◽  
Christian Brischke ◽  
Klaus Richter

Abstract Chemically or physically modified wood materials have enhanced resistance to wood decay fungi. In contrast to treatments with traditional wood preservatives, where the resistance is caused mainly by the toxicity of the chemicals added, little is known about the mode of action of nontoxic wood modification methods. This study reviews established theories related to resistance in acetylated, furfurylated, dimethylol dihydroxyethyleneurea-treated, and thermally modified wood. The main conclusion is that only one theory provides a consistent explanation for the initial inhibition of brown rot degradation in modified wood, that is, moisture exclusion via the reduction of cell wall voids. Other proposed mechanisms, such as enzyme nonrecognition, micropore blocking, and reducing the number of free hydroxyl groups, may reduce the degradation rate when cell wall water uptake is no longer impeded.


1996 ◽  
Vol 74 (10) ◽  
pp. 1657-1664 ◽  
Author(s):  
Marie-Hélène Prince Sigrist ◽  
Daniel Job

Decaying Betula pendula Roth trunks (measuring about 6 m in length) with brown rot or white rot were analyzed for the followings: stage of decay, wood structure, porosity, chemical composition of decayed wood, spatial distribution of fungal biomass, and mycoflora diversity. The fungal biomass in the trunks, although heterogeneous, is higher in white rot than in brown rot. As expected, the lignin/holocellulose ratio is higher in brown rot than in white rot (maximum 14.83 versus 0.67). Brown rot is generally more porous than white rot and presents a higher water absorption capacity but it retains less air. The results show that the basidiomycetes mycoflora is active in the white rot decay process. However it is not involved in the brown rot decay process because the wood is already much decayed (as much as 80% and more of lignin content). With the exception of moulds, the only mycoflora that could be isolated repetitively from the brown rot station was in fact pockets of white rot. Moreover, in brown rot, none of the epiflora matched the isolated endoflora. Keywords: white rot, brown rot, mycoflora, biomass.


Trees ◽  
2003 ◽  
Vol 17 (3) ◽  
pp. 263-268 ◽  
Author(s):  
Anni M. Harju ◽  
Martti Venäläinen ◽  
Seija Anttonen ◽  
Hannu Viitanen ◽  
Pirjo Kainulainen ◽  
...  

Holzforschung ◽  
2016 ◽  
Vol 70 (7) ◽  
pp. 691-697 ◽  
Author(s):  
Reza Hosseinpourpia ◽  
Carsten Mai

Abstract The resistance of heat treated (HT) wood to brown rot fungi has been investigated, while the role of the Fenton reaction (FR) in the initial phase of degradation was in focus. Micro-veneers made of Scots pine, were HT with various intensities and their mass losses (MLHT) were determined before soaking with a solution of Fenton’s reagent containing Fe ions and hydrogen peroxide. The mass loss of the veneers treated that way (MLFT), their tensile strength loss (TSLFT) and the H2O2 decomposition were observed. The MLFT, TSLFT, and H2O2 loss decreased with increasing MLHT of the veneers. Soaking of the veneers in acetate buffer containing only Fe without H2O2 revealed that the heat treatment (HT) strongly reduces the Fe uptake by the cell walls. FTIR spectroscopy indicated oxidation of the unmodified control veneers but did not reveal predominant decay of cell wall components; the HT veneers were not changed at all due to FR. It was concluded that the reason for the enhanced resistance of HT wood to FR is attributable to hindered diffusion of Fe ions into the wood cell wall.


2016 ◽  
Vol 7 (2) ◽  
pp. 66-70 ◽  
Author(s):  
S. L. Zelinka ◽  
R. Ringman ◽  
A. Pilgård ◽  
E. E. Thybring ◽  
J. E. Jakes ◽  
...  

Holzforschung ◽  
2012 ◽  
Vol 66 (1) ◽  
Author(s):  
Richard Giles ◽  
Ilona Peszlen ◽  
Perry Peralta ◽  
Hou-Min Chang ◽  
Roberta Farrell ◽  
...  

AbstractBetter access to wood carbohydrates as a result of reduced, or altered, lignin is a goal of biopulping, as well as biofuel research. In the present article, woods from three transgenic trees and one wild-type quaking aspen (Populus tremuloidesMichx.) were analyzed in terms of mass loss of cellulose and lignin after incubation with lignocellulolytic fungi. The transgenic trees had reduced lignin content through transfer of an antisense -4CL gene, elevated syringyl/guaiacyl (S/G) ratio through insertion of a sense CAld5H gene and low lignin content and elevated S/G ratio through simultaneous insertion of -4CL and CAld5H genes, respectively. The lignocellulolytic fungi employed were a lignin-selective white rot fungusCeriporiopsis subvermispora, a simultaneous white rot fungusTrametes versicolorand a brown rot fungusPostia placenta. Reduced lignin degradation was observed in woods with increased S/G ratios indicating that this analytical feature influences decay resistance, regardless of the fungal decay mechanism.


2006 ◽  
Vol 86 (Special Issue) ◽  
pp. 235-245 ◽  
Author(s):  
C. M. Preston ◽  
J. A. Trofymow ◽  
L. B. Flanagan

The natural abundance of 13C (δ13C) generally increases with decomposition of organic matter. This is contrary to the expected decrease, as lignin is hypothesized to accumulate relative to isotopically heavier cellulose. Our objective was to test the hypothesis that 13C depletion should be observed for gymnosperm logs that typically develop advanced brown-rot decay with high lignin content. With increasing lignin concentration [previously determined by nuclear magnetic resonance (NMR)], δ13C tended to become more negative for samples of Pseudotsuga menziesii, Tsuga heterophylla, Thuja plicata, and unidentified species from Coastal Forest Chronosequence sites of southern Vancouver Island. For a larger sample set without NMR analysis, δ13C was significantly more depleted for the highest decay classes, and total C was negatively correlated with δ13C, consistent with the higher total C of lignin than of cellulose. Relationships of total C and δ13C with density were much weaker. We discuss causes for the variability of δ13C in coarse woody debrisfrom these sites, and how the apparent paradox in the predicted change of δ13C with decomposition is largely due to the confusion of lignin, the biopolymer produced by higher plants, with the acid-unhydrolyzable residue (AUR) of the proximate analysis procedure commonly used to assess litter quality in decomposition studies. Key words: Coarse woody debris, decomposition, lignin, 13C NMR, δ13C, proximate analysis


Sign in / Sign up

Export Citation Format

Share Document