brown rot fungi
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 35)

H-INDEX

34
(FIVE YEARS 4)

2021 ◽  
Vol 2 (2) ◽  
pp. 127-133
Author(s):  
Ali Hyder ◽  
Muddasir Khan ◽  
Saifullah Khan ◽  
Madiha Iqbal ◽  
Sohail Ahmad Jan ◽  
...  

Plastics are resistant to microbial attack, which has become a major cause of environmental pollution. The current study aimed to identify the fungi, capable of the biodegradation of low-density polyethylene plastics from different waste disposal sites at Peshawar, Pakistan. A total of 15 soil samples were collected from different waste disposable sites of Peshawar. From these samples, five fungal isolates Aspergillus Niger, Aspergillus flavus, White rot, and Brown rot fungi were identified based on their colony morphology and microscopic examination. The biodegradation ability of these isolates against low-density polyethylene plastics was studied through the weight loss percentage method on 30 days of incubation. The weight loss percentage showed that Aspegillus Niger, Aspergillus flavus, Brown rot, and white rot fungi showed 22.9%, 16.1%, 18.4%, and 22.7% biodegradation, respectively. This study concluded that Aspergillus Niger, Aspergillus flavus, White rot, and Brown rot fungi are capable to degrade polyethylene plastics.Low density polyethylene, Plastics, Fungi, Biodegradation


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3758
Author(s):  
Miloš Pánek ◽  
Vlastimil Borůvka ◽  
Jana Nábělková ◽  
Kristýna Šimůnková ◽  
Aleš Zeidler ◽  
...  

In the future, we can expect increased requirements to the health and ecological integrity of biocides used for the protection of wood against bio-attacks, and it is therefore necessary to search for and thoroughly test new active substances. Caffeine has been shown to have biocidal efficacy against wood-destroying fungi, moulds and insects. The aim of the research was to determine whether the effectiveness of caffeine, as a fungicide of natural origin, is affected by a different type of treated wood. Norway spruce mature wood (Picea abies), Scots pine sapwood (Pinus sylvestris), and European beech wood (Fagus sylvatica) were tested in this work. The samples were treated using long-term dipping technology or coating (according to EN 152:2012) and then tested against selected wood-destroying brown rot fungi according to the standard EN 839:2015, wood-staining fungi according to EN 152:2012, and against mould growth according to EN 15457:2015. The penetration of caffeine solution into wood depth was also evaluated using liquid extraction chromatography, as well as the effect of the treatment used on selected physical and mechanical properties of wood. The test results showed that the type of wood used and the specific type of wood-degrading agent had a significant effect on the effectiveness of caffeine protection. The most resistant wood was the treated spruce, whereas the most susceptible to deterioration was the treated white pine and beech wood. The results of the work showed that caffeine treatment is effective against wood-destroying fungi at a concentration of 2%, and at 1% in some of the tested cases. It can be used as an ecologically acceptable short-term protection alternative against wood-staining fungi in lumber warehouses and is also partially effective against moulds. It also does not have negative effects on changes in the physical and mechanical properties of the tested wood species.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1234
Author(s):  
Alejandro Lucia ◽  
Mónica Murace ◽  
Gastón Sartor ◽  
Gabriel Keil ◽  
Ricardo Cámera ◽  
...  

Eugenol in water nanoemulsions loaded with tebuconazole appear as a very promising alternative formulations for wood protection against xylophagous fungi that are the main species responsible for different rots in wood structures. The dispersions as prepared and upon dilution (impregnation mixtures) were characterized by the apparent hydrodynamic diameter distribution of the oil droplets loaded with tebuconazole and their long-term stability. The impregnation mixtures were applied on wood of Populus canadensis I-214 clone by using a pressure-vacuum system, and the effectiveness against fungal degradation by Gloeophyllum sepiarium and Pycnoporus sanguineus fungi was determined. The retention of tebuconazole in wood was about 40% of the amount contained in the impregnation mixtures. The results showed that the impregnation process leads to a long-term antifungal protection to the wood, with the mass loss after 16 weeks being reduced more than 10 times in relation to the control (untreated poplar wood) and the reference wood (untreated beech wood).


2021 ◽  
Vol 2 ◽  
Author(s):  
Martina Kölle ◽  
Maria Augusta Crivelente Horta ◽  
J. Philipp Benz ◽  
Annica Pilgård

Brown rot fungi degrade wood in a two-step process in which enzymatic hydrolysis is preceded by an oxidative degradation phase. While a detailed understanding of the molecular processes during brown rot decay is mandatory for being able to better protect wooden products from this type of degradation, the underlying mechanisms are still not fully understood. This is particularly true for wood that has been treated to increase its resistance against rot. In the present study, the two degradation phases were separated to study the impact of wood acetylation on the behavior of three brown rot fungi commonly used in wood durability testing. Transcriptomic data from two strains of Rhodonia placenta (FPRL280 and MAD-698) and Gloeophyllum trabeum were recorded to elucidate differences between the respective decay strategies. Clear differences were found between the two decay stages in all fungi. Moreover, strategies varied not only between species but also between the two strains of the same species. The responses to wood acetylation showed that decay is generally delayed and that parts of the process are attenuated. By hierarchical clustering, we could localize several transcription factors within gene clusters that were heavily affected by acetylation, especially in G. trabeum. The results suggest that regulatory circuits evolve rapidly and are probably the major cause behind the different decay strategies as observed even between the two strains of R. placenta. Identifying key genes in these processes can help in decay detection and identification of the fungi by biomarker selection, and also be informative for other fields, such as fiber modification by biocatalysts and the generation of biochemical platform chemicals for biorefinery applications.


mBio ◽  
2021 ◽  
Author(s):  
Jesus Castaño ◽  
Jiwei Zhang ◽  
Mowei Zhou ◽  
Chia-Feng Tsai ◽  
Joon Yong Lee ◽  
...  

Brown rot fungi play a critical role in carbon recycling and are of industrial interest. These fungi typically use reactive oxygen species (ROS) to indiscriminately “loosen” wood cell walls at the outset of decay.


2021 ◽  
pp. 1-10
Author(s):  
Yu Fukasawa ◽  
Kimiyo Matsukura ◽  
Yoko Ando ◽  
Satoshi N. Suzuki ◽  
Kunihiro Okano ◽  
...  

Wood-inhabiting fungi are critically important for the decomposition of coarse woody debris (CWD). To evaluate the relative importance of climate, vegetation, and spatial factors in the functional composition of fungal communities that inhabit CWD in discontinuously distributed subalpine Hondo spruce (Picea jezoensis (Sieb. & Zucc.) Carr. var. hondoensis (Mayr) Rehder) forests, a metabarcoding analysis was conducted on spruce deadwood samples obtained from six subalpine forests in central Japan using a high-throughput DNA sequencing technique. We detected 454 fungal operational taxonomic units (OTUs) from 67 spruce CWDs and determined that spatial factors explained a larger fraction of community variation than environmental (climate and vegetation) factors at all six study sites. However, environmental factors explained a larger fraction than spatial factors if we excluded data from one site that is geographically distant from other study sites. The OTU number and the occurrence of brown-rot fungi were positively associated with mean annual temperature and negatively associated with mean annual precipitation. Similarly, the principal component of forest vegetation significantly affected the OTU number and occurrence of brown-rot fungi. Precipitation seasonality was positively associated with the OTU number of undefined saprotrophs. These results suggest that fungal OTUs belonging to different functional groups respond differently to environmental variables.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 668
Author(s):  
Justine Oma Angadam ◽  
Seteno Karabo Obed Ntwampe ◽  
Boredi Silas Chidi ◽  
Jun Wei Lim ◽  
Vincent Ifeanyi Okudoh

Human endeavors generate a significant quantity of bio-waste, even lignocellulosic waste, due to rapid industrialization and urbanization, and can cause pollution to aquatic ecosystems, and contribute to detrimental animal and human health because of the toxicity of consequent hydrolysis products. This paper contributes to a new understanding of the lignocellulosic waste bio-pretreatment process from a literature review, which can provide better biorefinery operational outcomes. The simultaneous partial biological lignin, cellulose and hemicellulose lysis, i.e., simultaneous semi-lignino-holocellulolysis, is aimed at suggesting that when ligninolysis ensues, holocellulolysis is simultaneously performed for milled lignocellulosic waste instead of having a sequential process of initial ligninolysis and subsequent holocellulolysis as is currently the norm. It is presumed that such a process can be solely performed by digestive enzyme cocktails from the monkey cups of species such as Nepenthes, white and brown rot fungi, and some plant exudates. From the literature review, it was evident that the pretreatment of milled lignocellulosic waste is largely incomplete, and ligninolysis including holocellulolysis ensues simultaneously when the waste is milled. It is further proposed that lignocellulosic waste pretreatment can be facilitated using an environmentally friendly approach solely using biological means. For such a process to be understood and applied on an industrial scale, an interdisciplinary approach using process engineering and microbiology techniques is required.


Author(s):  
Kiwamu Umezawa ◽  
Shuji Itakura

Abstract Brown rot fungi show a two-step wood degradation mechanism comprising oxidative radical-based and enzymatic saccharification systems. Recent studies have demonstrated that the brown rot fungus Rhodonia placenta expresses oxidoreductase genes ahead of glycoside hydrolase genes and spatially protects the saccharification enzymes from oxidative damage of the oxidoreductase reactions. This study aimed to assess the generality of the spatial gene regulation of these genes in other brown rot fungi and examine the effects of carbon source on the gene regulation. Gene expression analysis was performed on 14 oxidoreductase and glycoside hydrolase genes in the brown rot fungus Gloeophyllum trabeum, directionally grown on wood, sawdust-agar, and glucose-agar wafers. In G. trabeum, both oxidoreductase and glycoside hydrolase genes were expressed at higher levels in sections behind the wafers. The upregulation of glycoside hydrolase genes was significantly higher in woody substrates than in glucose, whereas the oxidoreductase gene expression was not affected by substrates.


2021 ◽  
Vol 71 (3) ◽  
pp. 283-289
Author(s):  
Yan Yang ◽  
He Sun ◽  
Shuang Yang ◽  
Wenye Sun ◽  
Ying Zhao ◽  
...  

Abstract To investigate the decay extent of wooden components in the ancient buildings of Danxia Temple, the absorption peak intensities, changes in chemical components, and cellulose crystallinity of red oak (Quercus sp.), birch (Betula sp.), and maple (Pterocarya sp.) wooden components were determined and analyzed using Fourier-transform infrared spectroscopy. The results are as follows: (1) The absorption peak intensities representing cellulose and hemicellulose decreased or disappeared obviously in the decayed red oak wood (DROW); on the contrary, those representing lignin increased. The indexes of the content of cellulose, hemicellulose, and cellulose crystallinity also decreased; on the contrary, those of the content of lignin increased. Those results indicated that cellulose and hemicellulose in DROW were largely degraded by brown-rot fungi. (2) The absorption peak intensities representing cellulose and hemicellulose decreased both in the decayed birch wood (DBW) and the decayed maple wood (DMW), whereas those representing lignin increased. The indexes of the content of cellulose, hemicellulose, and cellulose crystallinity also decreased, whereas those of lignin increased. Those results showed that cellulose and hemicellulose in DBW and DMW were seriously harmed not only by insects but also by brown-rot fungi. By comparison, the extent of fungal damage was lower in DMW than in DBW.


Sign in / Sign up

Export Citation Format

Share Document