Colour of larch heartwood and relationships to extractives and brown-rot decay resistance

Trees ◽  
2004 ◽  
Vol 18 (1) ◽  
pp. 102-108 ◽  
Author(s):  
Notburga Gierlinger ◽  
Dominique Jacques ◽  
Michael Grabner ◽  
Rupert Wimmer ◽  
Manfred Schwanninger ◽  
...  
Trees ◽  
2004 ◽  
Vol 18 (2) ◽  
pp. 230-236 ◽  
Author(s):  
Notburga Gierlinger ◽  
Dominique Jacques ◽  
Rupert Wimmer ◽  
Luc E. P�ques ◽  
Manfred Schwanninger

Holzforschung ◽  
2014 ◽  
Vol 68 (2) ◽  
pp. 239-246 ◽  
Author(s):  
Rebecka Ringman ◽  
Annica Pilgård ◽  
Christian Brischke ◽  
Klaus Richter

Abstract Chemically or physically modified wood materials have enhanced resistance to wood decay fungi. In contrast to treatments with traditional wood preservatives, where the resistance is caused mainly by the toxicity of the chemicals added, little is known about the mode of action of nontoxic wood modification methods. This study reviews established theories related to resistance in acetylated, furfurylated, dimethylol dihydroxyethyleneurea-treated, and thermally modified wood. The main conclusion is that only one theory provides a consistent explanation for the initial inhibition of brown rot degradation in modified wood, that is, moisture exclusion via the reduction of cell wall voids. Other proposed mechanisms, such as enzyme nonrecognition, micropore blocking, and reducing the number of free hydroxyl groups, may reduce the degradation rate when cell wall water uptake is no longer impeded.


Trees ◽  
2003 ◽  
Vol 17 (3) ◽  
pp. 263-268 ◽  
Author(s):  
Anni M. Harju ◽  
Martti Venäläinen ◽  
Seija Anttonen ◽  
Hannu Viitanen ◽  
Pirjo Kainulainen ◽  
...  

Holzforschung ◽  
2016 ◽  
Vol 70 (7) ◽  
pp. 691-697 ◽  
Author(s):  
Reza Hosseinpourpia ◽  
Carsten Mai

Abstract The resistance of heat treated (HT) wood to brown rot fungi has been investigated, while the role of the Fenton reaction (FR) in the initial phase of degradation was in focus. Micro-veneers made of Scots pine, were HT with various intensities and their mass losses (MLHT) were determined before soaking with a solution of Fenton’s reagent containing Fe ions and hydrogen peroxide. The mass loss of the veneers treated that way (MLFT), their tensile strength loss (TSLFT) and the H2O2 decomposition were observed. The MLFT, TSLFT, and H2O2 loss decreased with increasing MLHT of the veneers. Soaking of the veneers in acetate buffer containing only Fe without H2O2 revealed that the heat treatment (HT) strongly reduces the Fe uptake by the cell walls. FTIR spectroscopy indicated oxidation of the unmodified control veneers but did not reveal predominant decay of cell wall components; the HT veneers were not changed at all due to FR. It was concluded that the reason for the enhanced resistance of HT wood to FR is attributable to hindered diffusion of Fe ions into the wood cell wall.


2016 ◽  
Vol 7 (2) ◽  
pp. 66-70 ◽  
Author(s):  
S. L. Zelinka ◽  
R. Ringman ◽  
A. Pilgård ◽  
E. E. Thybring ◽  
J. E. Jakes ◽  
...  

Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lukas Emmerich ◽  
Maja Bleckmann ◽  
Sarah Strohbusch ◽  
Christian Brischke ◽  
Susanne Bollmus ◽  
...  

Abstract Chemical wood modification has been used to modify wood and improve its decay resistance. However, the mode of protective action is still not fully understood. Occasionally, outdoor products made from chemically modified timber (CMT) show internal decay while their outer shell remains intact. Hence, it was hypothesized that wood decay fungi may grow through CMT without losing their capability to degrade non-modified wood. This study aimed at developing a laboratory test set-up to investigate (1) whether decay fungi grow through CMT and (2) retain their ability to degrade non-modified wood. Acetylated and 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) treated wood were used in decay tests with modified ‘mantle specimens’ and untreated ‘core dowels’. It became evident that white rot (Trametes versicolor), brown rot (Coniophora puteana) and soft rot fungi can grow through CMT without losing their ability to degrade untreated wood. Consequently, full volume impregnation of wood with the modifying agent is required to achieve complete protection of wooden products. In decay tests with DMDHEU treated specimens, significant amounts of apparently non-fixated DMDHEU were translocated from modified mantle specimens to untreated wood cores. A diffusion-driven transport of nitrogen and DMDHEU seemed to be responsible for mass translocation during decay testing.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1462
Author(s):  
Ján Iždinský ◽  
Zuzana Vidholdová ◽  
Ladislav Reinprecht

In recent years, the production and consumption of thermally modified wood (TMW) has been increasing. Offcuts and other waste generated during TMWs processing into products, as well as already disposed products based on TMWs can be an input recycled raw material for production of particleboards (PBs). In a laboratory, 16 mm thick 3-layer PBs bonded with urea-formaldehyde (UF) resin were produced at 5.8 MPa, 240 °C and 8 s pressing factor. In PBs, the particles from fresh spruce wood and mixed particles from offcuts of pine, beech, and ash TMWs were combined in weight ratios of 100:0, 80:20, 50:50 and 0:100. Thickness swelling (TS) and water absorption (WA) of PBs decreased with increased portion of TMW particles, i.e., TS after 24 h maximally about 72.3% and WA after 24 h maximally about 64%. However, mechanical properties of PBs worsened proportionally with a higher content of recycled TMW—apparently, the modulus of rupture (MOR) up to 55.5% and internal bond (IB) up to 46.2%, while negative effect of TMW particles on the modulus of elasticity (MOE) was milder. Decay resistance of PBs to the brown-rot fungus Serpula lacrymans (Schumacher ex Fries) S.F.Gray increased if they contained TMW particles, maximally about 45%, while the mould resistance of PBs containing TMW particles improved only in the first days of test. In summary, the recycled TMW particles can improve the decay and water resistance of PBs exposed to higher humidity environment. However, worsening of their mechanical properties could appear, as well.


Sign in / Sign up

Export Citation Format

Share Document