Developing hybrid time series and artificial intelligence models for estimating air temperatures

Author(s):  
Babak Mohammadi ◽  
Saeid Mehdizadeh ◽  
Farshad Ahmadi ◽  
Nguyen Thi Thuy Lien ◽  
Nguyen Thi Thuy Linh ◽  
...  
Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 374 ◽  
Author(s):  
Taereem Kim ◽  
Ju-Young Shin ◽  
Hanbeen Kim ◽  
Sunghun Kim ◽  
Jun-Haeng Heo

Climate variability is strongly influencing hydrological processes under complex weather conditions, and it should be considered to forecast reservoir inflow for efficient dam operation strategies. Large-scale climate indices can provide potential information about climate variability, as they usually have a direct or indirect correlation with hydrologic variables. This study aims to use large-scale climate indices in monthly reservoir inflow forecasting for considering climate variability. For this purpose, time series and artificial intelligence models, such as Seasonal AutoRegressive Integrated Moving Average (SARIMA), SARIMA with eXogenous variables (SARIMAX), Artificial Neural Network (ANN), Adaptive Neural-based Fuzzy Inference System (ANFIS), and Random Forest (RF) models were employed with two types of input variables, autoregressive variables (AR-) and a combination of autoregressive and exogenous variables (ARX-). Several statistical methods, including ensemble empirical mode decomposition (EEMD), were used to select the lagged climate indices. Finally, monthly reservoir inflow was forecasted by SARIMA, SARIMAX, AR-ANN, ARX-ANN, AR-ANFIS, ARX-ANFIS, AR-RF, and ARX-RF models. As a result, the use of climate indices in artificial intelligence models showed a potential to improve the model performance, and the ARX-ANN and AR-RF models generally showed the best performance among the employed models.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Albert T. Young ◽  
Kristen Fernandez ◽  
Jacob Pfau ◽  
Rasika Reddy ◽  
Nhat Anh Cao ◽  
...  

AbstractArtificial intelligence models match or exceed dermatologists in melanoma image classification. Less is known about their robustness against real-world variations, and clinicians may incorrectly assume that a model with an acceptable area under the receiver operating characteristic curve or related performance metric is ready for clinical use. Here, we systematically assessed the performance of dermatologist-level convolutional neural networks (CNNs) on real-world non-curated images by applying computational “stress tests”. Our goal was to create a proxy environment in which to comprehensively test the generalizability of off-the-shelf CNNs developed without training or evaluation protocols specific to individual clinics. We found inconsistent predictions on images captured repeatedly in the same setting or subjected to simple transformations (e.g., rotation). Such transformations resulted in false positive or negative predictions for 6.5–22% of skin lesions across test datasets. Our findings indicate that models meeting conventionally reported metrics need further validation with computational stress tests to assess clinic readiness.


Sign in / Sign up

Export Citation Format

Share Document