The division of the generative nucleus and the formation of callose plugs in pollen tubes of Aechmea fasciata (Bromeliaceae) cultured in vitro

2005 ◽  
Vol 18 (1) ◽  
pp. 9-19 ◽  
Author(s):  
I. Vervaeke ◽  
E. Londers ◽  
G. Piot ◽  
R. Deroose ◽  
M. P. De Proft
2021 ◽  
Vol 40 (2) ◽  
pp. 205-222
Author(s):  
Monica Scali ◽  
Alessandra Moscatelli ◽  
Luca Bini ◽  
Elisabetta Onelli ◽  
Rita Vignani ◽  
...  

AbstractPollen tube elongation is characterized by a highly-polarized tip growth process dependent on an efficient vesicular transport system and largely mobilized by actin cytoskeleton. Pollen tubes are an ideal model system to study exocytosis, endocytosis, membrane recycling, and signaling network coordinating cellular processes, structural organization and vesicular trafficking activities required for tip growth. Proteomic analysis was applied to identifyNicotiana tabacumDifferentially Abundant Proteins (DAPs) after in vitro pollen tube treatment with membrane trafficking inhibitors Brefeldin A, Ikarugamycin and Wortmannin. Among roughly 360 proteins separated in two-dimensional gel electrophoresis, a total of 40 spots visibly changing between treated and control samples were identified by MALDI-TOF MS and LC–ESI–MS/MS analysis. The identified proteins were classified according to biological processes, and most proteins were related to pollen tube energy metabolism, including ammino acid synthesis and lipid metabolism, structural features of pollen tube growth as well modification and actin cytoskeleton organization, stress response, and protein degradation. In-depth analysis of proteins corresponding to energy-related pathways revealed the male gametophyte to be a reliable model of energy reservoir and dynamics.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Biying Dong ◽  
Qing Yang ◽  
Zhihua Song ◽  
Lili Niu ◽  
Hongyan Cao ◽  
...  

AbstractMature pollen germinates rapidly on the stigma, extending its pollen tube to deliver sperm cells to the ovule for fertilization. The success of this process is an important factor that limits output. The flavonoid content increased significantly during pollen germination and pollen tube growth, which suggests it may play an important role in these processes. However, the specific mechanism of this involvement has been little researched. Our previous research found that hyperoside can prolong the flowering period of Abelmoschus esculentus (okra), but its specific mechanism is still unclear. Therefore, in this study, we focused on the effect of hyperoside in regulating the actin-depolymerizing factor (ADF), which further affects the germination and growth of pollen. We found that hyperoside can prolong the effective pollination period of okra by 2–3-fold and promote the growth of pollen tubes in the style. Then, we used Nicotiana benthamiana cells as a research system and found that hyperoside accelerates the depolymerization of intercellular microfilaments. Hyperoside can promote pollen germination and pollen tube elongation in vitro. Moreover, AeADF1 was identified out of all AeADF genes as being highly expressed in pollen tubes in response to hyperoside. In addition, hyperoside promoted AeADF1-mediated microfilament dissipation according to microfilament severing experiments in vitro. In the pollen tube, the gene expression of AeADF1 was reduced to 1/5 by oligonucleotide transfection. The decrease in the expression level of AeADF1 partially reduced the promoting effect of hyperoside on pollen germination and pollen tube growth. This research provides new research directions for flavonoids in reproductive development.


1997 ◽  
Vol 110 (10) ◽  
pp. 1187-1198 ◽  
Author(s):  
R.M. Parton ◽  
S. Fischer ◽  
R. Malho ◽  
O. Papasouliotis ◽  
T.C. Jelitto ◽  
...  

The existence of pronounced cytoplasmic pH gradients within the apices of tip-growing cells, and the role of cytoplasmic pH in regulating tip growth, were investigated in three different cell types: vegetative hyphae of Neurospora crassa; pollen tubes of Agapanthus umbellatus; and rhizoids of Dryopteris affinis gametophytes. Examination of cytoplasmic pH in growing cells was performed by simultaneous, dual emission confocal ratio imaging of the pH-sensitive probe carboxy SNARF-1. Considerable attention was paid to the fine tuning of dye loading and imaging parameters to minimise cellular perturbation and assess the extent of dye partitioning into organelles. With optimal conditions, cytoplasmic pH was measured routinely with a precision of between +/−0.03 and +/−0.06 of a pH unit and a spatial resolution of 2.3 microm2. Based on in vitro calibration, estimated values of mean cytoplasmic pH for cells loaded with dye-ester were between 7.15 and 7.25 for the three cell types. After pressure injecting Neurospora hyphae with dextran-conjugated dye, however, the mean cytoplasmic pH was estimated to be 7.57. Dextran dyes are believed to give a better estimate of cytoplasmic pH because of their superior localisation and retention within the cytosol. No significant cytoplasmic pH gradient (delta pH of >0.1 unit) was observed within the apical 50 microm in growing cells of any of the three cell types. Acidification or alkalinisation of the cytoplasm in Neurospora hyphae, using a cell permeant weak acid (propionic acid at pH 7.0) or weak base (trimethylamine at pH 8.0), slowed down but did not abolish growth. However, similar manipulation of the cytoplasmic pH of Agapanthus pollen tubes and Dryopteris rhizoids completely inhibited growth. Modification of external pH affected the growth pattern of all cell types. In hyphae and pollen tubes, changes in external pH were found to have a small transient effect on cytoplasmic pH but the cells rapidly readjusted towards their original pH. Our results suggest that pronounced longitudinal gradients in cytoplasmic pH are not essential for the regulation of tip growth.


1991 ◽  
pp. 271-283 ◽  
Author(s):  
J. E. Gray ◽  
B. A. McClure ◽  
I. Bonig ◽  
M. A. Anderson ◽  
A. E. Clarke

2002 ◽  
Vol 30 (3) ◽  
pp. 323-329 ◽  
Author(s):  
Udo Kristen ◽  
Natalie Bischoff ◽  
Saskia Lisboa ◽  
Enno Schirmer ◽  
Sören Witt ◽  
...  

Tobacco pollen tubes were used as a standard in vitro system to investigate cell growth aberrations caused by some of the Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) programme chemicals and other toxic compounds. Changes in cytoskeletal pattern were observed in the tube cells by using tubu-lin immunofluorescence and rhodamin–phalloidin fluorescence for the localisation of microtubules and actin filaments, respectively. Four different types of cell malformation were found: screw-like growth, isodiametric tip swelling, hook formation, and pollen grain enlargement. We suggest that these malformations resulted from an interference by the chemicals with the cytosolic calcium gradient which controls tip growth and the orientation of the pollen tube. The results may contribute to a general understanding of toxicity-based cell malformations.


2007 ◽  
Vol 97 (8) ◽  
pp. 892-899 ◽  
Author(s):  
Khalid Amari ◽  
Lorenzo Burgos ◽  
Vicente Pallas ◽  
María Amelia Sanchez-Pina

The route of infection and the pattern of distribution of Prunus necrotic ringspot virus (PNRSV) in apricot pollen were studied. PNRSV was detected both within and on the surface of infected pollen grains. The virus invaded pollen during its early developmental stages, being detected in pollen mother cells. It was distributed uniformly within the cytoplasm of uni- and bicellular pollen grains and infected the generative cell. In mature pollen grains, characterized by their triangular shape, the virus was located mainly at the apertures, suggesting that PNRSV distribution follows the same pattern as the cellular components required for pollen tube germination and cell wall tube synthesis. PNRSV also was localized inside pollen tubes, especially in the growth zone. In vitro experiments demonstrated that infection with PNRSV decreases the germination percentage of pollen grains by more than half and delays the growth of pollen tubes by ≈24 h. However, although PNRSV infection affected apricot pollen grain performance during germination, the presence of the virus did not completely prevent fertilization, because the infected apricot pollen tubes, once germinated, were able to reach the apricot embryo sacs, which, in the climatic conditions of southeastern Spain, mature later than in other climates. Thus, infected pollen still could play an important role in the vertical transmission of PNRSV in apricot.


2015 ◽  
Vol 46 (4) ◽  
pp. 587-598 ◽  
Author(s):  
E. Lewandowska ◽  
M. Charzyńska

About 90 per cent of <i>Tradescantia bracteata</i> pollen germinates <i>in vitro</i> after 15 min. Mitosis starts in the pollen tube after about 3 h. The mitotic trans-formations of chromosomes within the generative nucleus are not synchronized. They involve succesively the linearly arranged chromosomes in the elongated generative nucleus. In metaphase the chromosomes are arranged tandem-like linearly along the pollen tube. The chromatides translocate in anaphase from various distances to the poles in a plane parallel to the metaphase plate. This suggests that chromosomes have individual mitotic spindles and that coordination of the chromosome transformations in the generative cell is much less strict than in a typical somatic mitosis. Starch is the storage material of pollen grains. In the vegetative cytoplasm of mature pollen grains minute reddish-orange vesicular structures are visible after staining with neutral red. They do not fuse with the vacuoles proper arising in germinating pollen grains to form the vacuolar system of the pollen tube.


Sign in / Sign up

Export Citation Format

Share Document