A neuro-fuzzy approach for prediction of longitudinal wave velocity

2012 ◽  
Vol 22 (7-8) ◽  
pp. 1685-1693 ◽  
Author(s):  
A. K. Verma ◽  
T. N. Singh
Fuzzy Systems ◽  
2017 ◽  
pp. 1385-1395
Author(s):  
A. K. Verma ◽  
T. N. Singh ◽  
Sachin Maheshwar

Intelligent techniques are quickly gaining importance in the field of geophysics, mining and geology. In this chapter the significance of intelligent techniques like ANN and ANFIS for prediction of longitudinal wave velocity and its advantages over other conventional methods of computing have been discussed. Longitudinal wave measurement is an indicator of peak particle velocity during blasting in a mine and it is a significant factor to be predicted to minimize the damage caused by ground vibrations. Wave velocity measurements have wide applications in the different fields of geophysics, mining and geology. In this chapter, ANN and ANFIS models are designed to predict the longitudinal wave velocity of different rocks and correlation have been developed with fracture properties. The fracture roughness coefficient and physico-mechanical properties are taken as input parameters and longitudinal wave velocity as output parameters. The mean absolute percentage error for the Longitudinal wave velocity predicted by Adaptive Neuro Fuzzy Inference System has been found to be the least.


Author(s):  
A. K. Verma ◽  
T. N. Singh ◽  
Sachin Maheshwar

Intelligent techniques are quickly gaining importance in the field of geophysics, mining and geology. In this chapter the significance of intelligent techniques like ANN and ANFIS for prediction of longitudinal wave velocity and its advantages over other conventional methods of computing have been discussed. Longitudinal wave measurement is an indicator of peak particle velocity during blasting in a mine and it is a significant factor to be predicted to minimize the damage caused by ground vibrations. Wave velocity measurements have wide applications in the different fields of geophysics, mining and geology. In this chapter, ANN and ANFIS models are designed to predict the longitudinal wave velocity of different rocks and correlation have been developed with fracture properties. The fracture roughness coefficient and physico-mechanical properties are taken as input parameters and longitudinal wave velocity as output parameters. The mean absolute percentage error for the Longitudinal wave velocity predicted by Adaptive Neuro Fuzzy Inference System has been found to be the least.


2014 ◽  
Vol 633 ◽  
pp. 472-475 ◽  
Author(s):  
Tian Tian Sun ◽  
Yan Xia Wang ◽  
Hai Yun ◽  
Dong Huan Zhang ◽  
Qing Hui Shang

Mullite material is a material commonly used in honeycomb regenerator, because in the process of using material under big temperature difference effect, so have a great demand for its thermal shock resistance. The used mullite ceramics were made by the direct solid phase sintering method, and the modulus of elasticity of the mullite ceramics measured by ultrasonic pulse-echo method in a thermal shock and thermal fatigue experiment, respectively. In the air-cooling condition, the study found the mullite ceramic without thermal shock that the longitudinal wave velocity and shear wave velocity respectively 3970(m/s) and 2492(m/s). After 45 times thermal shock of temperature difference of 800°C, longitudinal wave velocity and shear wave velocity decreased to 3910(m/s) and 2457(m/s), and the value of the modulus of elasticity changed 1020MPa. By observing the change of the elastic modulus value rule, can know the elastic deformation of thermal shock on the material performance of thermal shock damage. Moreover, the results can provide the data basis for the calculation of the residual strength and the numerical simulation of thermal stress.


Author(s):  
Michiaki Kobayashi

Concerned with the longitudinal wave velocity changes under plastic deformation in pure shear state, the experimental results of longitudinal wave velocity are categorized to two types: (i) simple decreasing change tendency at polished surface specimens, and (ii) chaotic change tendency at unpolished surface specimens. In the present paper, the effects of surface roughness and crystal orientation on the amount of cross slip under plastic deformation are studied via finite element polycrystal model (FEPM) from the viewpoint of longitudinal wave velocity change showing a sensitive response to the point defects caused by cross slip.


2012 ◽  
Vol 51 (7S) ◽  
pp. 07GA09 ◽  
Author(s):  
Akira Nagakubo ◽  
Akihiro Yamamoto ◽  
Kenichi Tanigaki ◽  
Hirotsugu Ogi ◽  
Nobutomo Nakamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document