Accurately predicting heat transfer performance of ground heat exchanger for ground-coupled heat pump systems using data mining methods

2016 ◽  
Vol 28 (12) ◽  
pp. 3993-4010 ◽  
Author(s):  
Zhaoyi Zhuang ◽  
Xianye Ben ◽  
Rui Yan ◽  
Jianhua Pang ◽  
Yongbin Li
2012 ◽  
Vol 516-517 ◽  
pp. 316-321
Author(s):  
Zhong Yi Yu ◽  
Yan Hua Chen ◽  
Xiao Liang Tang ◽  
Jian Ping Lei

According to the application conditions of horizontal ground heat exchanger(HGHE) under artificial lake, this paper uses numerical simulation method to do dynamic simulation research of the heat transfer performance of HGHE, analyzes the effect of connection mode and pipe flow velocity on heat transfer performance of HGHE in detail,puts forward efficient HGHE loop formation mode,and will provide effective technical support for ground-source heat pump system design with HGHE.


2014 ◽  
Vol 945-949 ◽  
pp. 2820-2824 ◽  
Author(s):  
Li Bai ◽  
Peng Xuan Wang

For the case of ground-source heat pump in severe cold regions in winter, the heat transfer situation of the ground and ground heat exchanger was dynamically simulated according to the statistics of a project in Changchun to analysis the change of the ground heat, which provided references for the initial design and operation and management of the ground-coupled heat pump in severe cold regions.


2014 ◽  
Vol 580-583 ◽  
pp. 2488-2491
Author(s):  
Rong Hui Wang ◽  
Qing Hua Wang ◽  
Ye Feng

5 radial heat exchange wells were designed, and the different angle drilling, drilling pipe, and grouting backfill construction technology was studied. In addition, the heat transfer performance of the buried radial heat exchange wells was tested. The results show that, design of pipe equipment is feasible, construction is convenient, and the ratio of backfill material is reasonable; the heat transfer performance of 90 °buried tube is the best. The smaller the angle with the ground heat exchanger, the greater the heat exchange performance is affected by the surface temperature.


Author(s):  
Koutaro TSUBAKI ◽  
Yuji KIMURA ◽  
Retsu HARADA ◽  
Yukari KAI ◽  
Yuichi MITSUTAKE

2020 ◽  
Vol 166 ◽  
pp. 20-34
Author(s):  
Chao Li ◽  
Yanling Guan ◽  
Jianhong Liu ◽  
Chao Jiang ◽  
Ruitao Yang ◽  
...  

Author(s):  
Ali H. Tarrad ◽  

The ground heat exchanger plays a major role in the thermal performance and economic optimization of the ground-coupled heat pump. The present study focuses on the effect of the borehole size and the grout and soil thermal properties on the thermal assessment of these heat exchangers. A double U-tube heat exchanger was studied numerically by the COMSOL Multiphysics 5.4 software in a 3-dimensional discretization model. The double U-tube was circuited as a parallel flow arrangement and situated in a parallel configuration (PFPD) deep in the borehole. The grout and ground thermal conductivities were selected in the range of (0.73-2.0) W/m.K and (1.24-2.8) W/m.K respectively. The results revealed that the ground thermal conductivity showed a more pronounced influence on the thermal performance of the ground heat exchanger and with less extent for the grouting one. Increasing the grout filling thermal conductivity from (0.73) W/m.K to (2.0) W/m.K at a fixed ground thermal conductivity of (2.4) W/m.K has augmented the heat transfer rate by (10) %. The heat transfer rate of the ground heat exchanger exhibited marked enhancement as much as double when the ground thermal conductivity was increased from (1.24) W/m.K to (2.8) W/m.K at fixed grout thermal conductivity range of (0.78-2.0) W/m.K. It has been verified that increasing the borehole size has a negligible effect on the ground heat exchanger thermal performance when a grout with a high thermal conductivity was utilized in the ranged of examined configurations. The steady-state numerical analysis model outcomes of the present work could be implemented for the preliminary borehole design for a ground heat exchanger.


Sign in / Sign up

Export Citation Format

Share Document