Heat transfer performance of a deep ground heat exchanger for building heating in long-term service

2020 ◽  
Vol 166 ◽  
pp. 20-34
Author(s):  
Chao Li ◽  
Yanling Guan ◽  
Jianhong Liu ◽  
Chao Jiang ◽  
Ruitao Yang ◽  
...  
2012 ◽  
Vol 516-517 ◽  
pp. 316-321
Author(s):  
Zhong Yi Yu ◽  
Yan Hua Chen ◽  
Xiao Liang Tang ◽  
Jian Ping Lei

According to the application conditions of horizontal ground heat exchanger(HGHE) under artificial lake, this paper uses numerical simulation method to do dynamic simulation research of the heat transfer performance of HGHE, analyzes the effect of connection mode and pipe flow velocity on heat transfer performance of HGHE in detail,puts forward efficient HGHE loop formation mode,and will provide effective technical support for ground-source heat pump system design with HGHE.


2014 ◽  
Vol 580-583 ◽  
pp. 2488-2491
Author(s):  
Rong Hui Wang ◽  
Qing Hua Wang ◽  
Ye Feng

5 radial heat exchange wells were designed, and the different angle drilling, drilling pipe, and grouting backfill construction technology was studied. In addition, the heat transfer performance of the buried radial heat exchange wells was tested. The results show that, design of pipe equipment is feasible, construction is convenient, and the ratio of backfill material is reasonable; the heat transfer performance of 90 °buried tube is the best. The smaller the angle with the ground heat exchanger, the greater the heat exchange performance is affected by the surface temperature.


Author(s):  
Koutaro TSUBAKI ◽  
Yuji KIMURA ◽  
Retsu HARADA ◽  
Yukari KAI ◽  
Yuichi MITSUTAKE

2013 ◽  
Vol 832 ◽  
pp. 160-165 ◽  
Author(s):  
Mohammad Alam Khairul ◽  
Rahman Saidur ◽  
Altab Hossain ◽  
Mohammad Abdul Alim ◽  
Islam Mohammed Mahbubul

Helically coiled heat exchangers are globally used in various industrial applications for their high heat transfer performance and compact size. Nanofluids can provide excellent thermal performance of this type of heat exchangers. In the present study, the effect of different nanofluids on the heat transfer performance in a helically coiled heat exchanger is examined. Four different types of nanofluids CuO/water, Al2O3/water, SiO2/water, and ZnO/water with volume fractions 1 vol.% to 4 vol.% was used throughout this analysis and volume flow rate was remained constant at 3 LPM. Results show that the heat transfer coefficient is high for higher particle volume concentration of CuO/water, Al2O3/water and ZnO/water nanofluids, while the values of the friction factor and pressure drop significantly increase with the increase of nanoparticle volume concentration. On the contrary, low heat transfer coefficient was found in higher concentration of SiO2/water nanofluids. The highest enhancement of heat transfer coefficient and lowest friction factor occurred for CuO/water nanofluids among the four nanofluids. However, highest friction factor and lowest heat transfer coefficient were found for SiO2/water nanofluids. The results reveal that, CuO/water nanofluids indicate significant heat transfer performance for helically coiled heat exchanger systems though this nanofluids exhibits higher pressure drop.


Sign in / Sign up

Export Citation Format

Share Document