Dynamical balance optimization and control of biped robots in double-support phase under perturbing external forces

2016 ◽  
Vol 28 (12) ◽  
pp. 4123-4137 ◽  
Author(s):  
Liyang Wang ◽  
Yongyong Ge ◽  
Ming Chen ◽  
Yongqing Fan
2021 ◽  
Vol 11 (5) ◽  
pp. 2342
Author(s):  
Long Li ◽  
Zhongqu Xie ◽  
Xiang Luo ◽  
Juanjuan Li

Gait pattern generation has an important influence on the walking quality of biped robots. In most gait pattern generation methods, it is usually assumed that the torso keeps vertical during walking. It is very intuitive and simple. However, it may not be the most efficient. In this paper, we propose a gait pattern with torso pitch motion (TPM) during walking. We also present a gait pattern with torso keeping vertical (TKV) to study the effects of TPM on energy efficiency of biped robots. We define the cyclic gait of a five-link biped robot with several gait parameters. The gait parameters are determined by optimization. The optimization criterion is chosen to minimize the energy consumption per unit distance of the biped robot. Under this criterion, the optimal gait performances of TPM and TKV are compared over different step lengths and different gait periods. It is observed that (1) TPM saves more than 12% energy on average compared with TKV, and the main factor of energy-saving in TPM is the reduction of energy consumption of the swing knee in the double support phase and (2) the overall trend of torso motion is leaning forward in double support phase and leaning backward in single support phase, and the amplitude of the torso pitch motion increases as gait period or step length increases.


2020 ◽  
Vol 14 ◽  
Author(s):  
Liyu Cao ◽  
Xinyu Chen ◽  
Barbara F. Haendel

Experiments in animal models have shown that running increases neuronal activity in early visual areas in light as well as in darkness. This suggests that visual processing is influenced by locomotion independent of visual input. Combining mobile electroencephalography, motion- and eye-tracking, we investigated the influence of overground free walking on cortical alpha activity (~10 Hz) and eye movements in healthy humans. Alpha activity has been considered a valuable marker of inhibition of sensory processing and shown to negatively correlate with neuronal firing rates. We found that walking led to a decrease in alpha activity over occipital cortex compared to standing. This decrease was present during walking in darkness as well as during light. Importantly, eye movements could not explain the change in alpha activity. Nevertheless, we found that walking and eye related movements were linked. While the blink rate increased with increasing walking speed independent of light or darkness, saccade rate was only significantly linked to walking speed in the light. Pupil size, on the other hand, was larger during darkness than during light, but only showed a modulation by walking in darkness. Analyzing the effect of walking with respect to the stride cycle, we further found that blinks and saccades preferentially occurred during the double support phase of walking. Alpha power, as shown previously, was lower during the swing phase than during the double support phase. We however could exclude the possibility that the alpha modulation was introduced by a walking movement induced change in electrode impedance. Overall, our work indicates that the human visual system is influenced by the current locomotion state of the body. This influence affects eye movement pattern as well as neuronal activity in sensory areas and might form part of an implicit strategy to optimally extract sensory information during locomotion.


Robotica ◽  
2014 ◽  
Vol 34 (7) ◽  
pp. 1495-1516
Author(s):  
Yeoun-Jae Kim ◽  
Joon-Yong Lee ◽  
Ju-Jang Lee

SUMMARYIn this paper, we propose and examine a force-resisting balance control strategy for a walking biped robot under the application of a sudden unknown, continuous force. We assume that the external force is acting on the pelvis of a walking biped robot and that the external force in the z-direction is negligible compared to the external forces in the x- and y-directions. The main control strategy involves moving the zero moment point (ZMP) of the walking robot to the center of the robot's sole resisting the externally applied force. This strategy is divided into three steps. The first step is to detect an abnormal situation in which an unknown continuous force is applied by examining the position of the ZMP. The second step is to move the ZMP of the robot to the center of the sole resisting the external force. The third step is to have the biped robot convert from single support phase (SSP) to double support phase (DSP) for an increased force-resisting capability. Computer simulations and experiments of the proposed methods are performed to benchmark the suggested control strategy.


Author(s):  
Farsam Farzadpour ◽  
Mohammad Danesh ◽  
Seyed M TorkLarki

Gait generation plays a significant role in the quality of locomotion of legged robots. This paper presents the development of multi-phase dynamic equations and optimal trajectory generation for a seven-link planar-biped robot walking on the ground level with consideration of feet rotation in the double support phase. The main contribution of this paper is to increase the stability margin at the phase transition time for simultaneous feet rotation in double support phase by introducing a new style of feet rotation. First, the derivation of the dynamics equations, which is a challenging problem due to the existence of the holonomic constraints, is performed using the Lagrangian formulation. Then, an analytical solution to inverse kinematics is proposed to determine the angles of each joint. A multi-objective genetic algorithm-based optimization technique is proposed to obtain the key parameters in trajectory generation so that the zero moment point tracks a predefined stable trajectory and additionally minimizes the power consumption, which is subjected to actuators’ powers limitations. The effect of the hip height on the total power consumption is also investigated. The numerical simulations demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document