single support phase
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 19)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Chao-Fu Chen ◽  
Hui-Ju Wu ◽  
Zheng-Sheng Yang ◽  
Hui Chen ◽  
Hsien-Te Peng

The purpose of this study was to explore the kinematical characteristics of jumping discus throwing. Eight male right-handed discus throwers who used to practice the jumping throwing technique were recruited as participants. Two high-speed digital cameras with 120 Hz sampling rate were synchronized to capture the movement. The captured images were processed using a motion analysis suite, and the markers attached to joints on images were digitized manually. Based on the results, throwers should keep smaller the shoulder–hip twisting and the right anterior superior iliac spine (abbreviated: ASIS) in front of the right acromion (for right-handed throwers) from the instant the right foot lands to the instant the left foot lands, before the instant of the right foot lands; keep the discus at a depressed position; and reduce the time before discus release, particularly the time of the non-support phase and the second single-support phase. Additionally, release velocity must be improved because throwing distance is directly proportional to squared release velocity. In conclusion, the current study demonstrated comprehensive kinematical analyses, which can be used to instruct the jumping discus throwing technique with duration and angle characteristics of throwing movement for athletes by coaches with videos.


Author(s):  
I. N. Vankina ◽  
D. A. Fetisov

Modeling the anthropomorphic robot movement is of great interest to researchers all over the world. At the same time, the movement control of a walking mechanism is always a high dimension challenge. The difficulty with the anthropomorphic robot control is also caused by the fact that such a mechanism has always a hybrid dynamics and represents a sequential change of two phases – the single support phase and the double support phase (phase of changing robot’s leg). At the single support phase and at another phase the behavior of the biped robot is described by a system of ordinary differential equations and by a system of linear algebraic equations, respectively.The task of biped robot movement control has been studied in detail for the case when the robot moves over the horizontal surface. Obstacles make the task significantly complicated. The paper considers the movement control of the biped robot over the surface that is a periodic alternation of horizontal sections and obstacles. The obstacles represent steps of the same height known. It is assumed that the lengths of horizontal sections and steps are known as well. The objective is to create a control that provides robot’s periodic movement over the specified surface according to inherent characteristics of a walking human.For the single support phase, the outputs are proposed, the equality of which to zero corresponds to the robot’s movement with a given set of characteristics. The paper presents the feedback controls that stabilize the proposed outputs for a finite amount of time. By choosing the feedback parameters, it is possible to adjust the stabilization time so that the outputs become equal to zero when reached the end of each step.It is shown that for the chosen control law, the problem of constructing the control of robot’s periodic movement is reduced to the solution of a nonlinear equation. In the paper, we discuss the approaches to solving this equation and present the results of numerical simulation.The results obtained can be used to solve the problem of providing control of the biped robot movement over the surfaces with obstacles of a more complicated shape.Modeling the anthropomorphic robot movement is of great interest to researchers all over the world. At the same time, the movement control of a walking mechanism is always a high dimension challenge. The difficulty with the anthropomorphic robot control is also caused by the fact that such a mechanism has always a hybrid dynamics and represents a sequential change of two phases – the single support phase and the double support phase (phase of changing robot’s leg). At the single support phase and at another phase the behavior of the biped robot is described by a system of ordinary differential equations and by a system of linear algebraic equations, respectively.The task of biped robot movement control has been studied in detail for the case when the robot moves over the horizontal surface. Obstacles make the task significantly complicated. The paper considers the movement control of the biped robot over the surface that is a periodic alternation of horizontal sections and obstacles. The obstacles represent steps of the same height known. It is assumed that the lengths of horizontal sections and steps are known as well. The objective is to create a control that provides robot’s periodic movement over the specified surface according to inherent characteristics of a walking human.For the single support phase, the outputs are proposed, the equality of which to zero corresponds to the robot’s movement with a given set of characteristics. The paper presents the feedback controls that stabilize the proposed outputs for a finite amount of time. By choosing the feedback parameters, it is possible to adjust the stabilization time so that the outputs become equal to zero when reached the end of each step.It is shown that for the chosen control law, the problem of constructing the control of robot’s periodic movement is reduced to the solution of a nonlinear equation. In the paper, we discuss the approaches to solving this equation and present the results of numerical simulation.The results obtained can be used to solve the problem of providing control of the biped robot movement over the surfaces with obstacles of a more complicated shape.


2021 ◽  
Vol 67 (4) ◽  
pp. 449-461
Author(s):  
Aliyeh Daryabor ◽  
Gholamreza Aminian ◽  
Mokhtar Arazpour ◽  
Mina Baniasad ◽  
Sumiko Yamamoto

Objectives: This study aims to evaluate the effect of two ankle-foot orthoses (AFOs), AFO with plantar flexion stop (AFO-PlfS), and AFO with plantar flexion resistance (AFO-PlfR), while wearing standard shoes and rocker-sole shoes. Patients and methods: Between November 2017 and July 2018, in this randomized-controlled study, a total of 20 stroke patients (8 males, 12 females; mean age: 48.1 years; range, 33 to 65 years) in chronic phase were randomized to AFO groups (AFO-PlfS group, n=10 and AFO-PlfR group, n=10). Each group received the allocated AFO along with two kinds of shoes (standard shoe and rocker shoe) for a two-week adaptation. Two effects were separately evaluated: The orthotic effect and rocker shoe effect were defined as the evaluation of using an AFO wearing standard shoe compared to only standard shoe, and evaluation of using an AFO wearing rocker shoe compared to an AFO wearing standard shoe, respectively. The gait of each group was measured by three-dimensional motion analysis. Results: A significant orthotic effect was found in both AFO groups in spatiotemporal parameters and maximum ankle dorsiflexion in the single-support phase. Additionally, the AFO-PlfR group showed a significant improvement in the parameters related to the first rocker of gait, but not for AFO-PlfS group concerning the orthotic effect. The rocker shoe effect was found in significant reduction of peak ankle plantar flexor moment and power ankle generation during preswing for both AFO groups. Conclusion: According to the orthotic effect, an AFO-PlfR can create better function in the improvement of parameters related to the first rocker. Although a rocker shoe can facilitate rollover for weight progression in the third rocker of gait, it cannot make a strong push-off function in stroke survivors.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5983
Author(s):  
Kristina Daunoraviciene ◽  
Jurgita Ziziene ◽  
Jolanta Pauk ◽  
Giedre Juskeniene ◽  
Juozas Raistenskis

The purpose of this study was to examine the changes in muscular activity between the left and right lower legs during gait in healthy children throughout temporal parameters of EMG and symmetry index (SI). A total of 17 healthy children (age: 8.06 ± 1.92 years) participated in this study. Five muscles on both legs were examined via the Vicon 8-camera motion analysis system synchronized with a Trigno EMG Wireless system and a Bertec force plate; onset–offset intervals were analyzed. The highest occurrence frequency of the primary activation modality was found in the stance phase. In the swing phase, onset–offset showed only a few meaningful signs of side asymmetry. The knee flexors demonstrated significant differences between the sides (p < 0.05) in terms of onset–offset intervals: biceps femoris in stance, single support, and pre-swing phases, with SI values = −6.45%, −14.29%, and −17.14%, respectively; semitendinosus in single support phase, with SI = −12.90%; lateral gastrocnemius in swing phase, with SI = −13.33%; and medial gastrocnemius in stance and single support phases, with SI = −13.33% and −23.53%, respectively. The study outcomes supply information about intra-subject variability, which is very important in follow-up examinations and comparison with other target groups of children.


2021 ◽  
Vol 16 (4) ◽  
pp. 122-134
Author(s):  
Alexander О. Blinov ◽  
◽  
Andrey V. Borisov ◽  
Larisa V. Konchina ◽  
Marina G. Kulikova ◽  
...  

A two-link model of exoskeleton with variable-length links for supporting the lower limbs of the human musculoskeletal system is proposed in the article. The researched model differs from the existing ones by the variable-length links, and by the angle calculation method. While in the existing models, the angles are calculated from the regular direction – from vertical, or from horizontal, – in the proposed research they are calculated between the links. As for practical exoskeleton implementation, the proposed method of angle calculation is appropriate to the actual working conditions of the electrical motors with the reduction gears installed in the hinges, which change the angles between the links. The construction of a variable-length exoskeleton link consists of two absolutely solid weighty sections located at both ends of the link and one weightless section between them in the center of the link. In the weightless section, there is a drive that creates a control longitudinal force, which realizes the increase or decrease in the length of the link in the required manner and provides the necessary maintenance of the length of the link when the person moves in the exoskeleton. The links are connected to each other using spherical hinges. Drives are installed in each hinge, creating control torques, which provide a relative rotational movement of the links. The jointly controlling longitudinal forces and moments realize the maintenance of the posture or the movement of the link in the required manner and, in relation to the exoskeleton, the repetition of the basic biomechanical properties of the human musculoskeletal system. The mathematical model in the form of the system of Lagrange differential equations of the second kind is obtained. The obtained mathematical model is examined for existence and uniqueness of the Cauchy solution. The kinematic trajectory of the link motion has been synthesized, which simulates the anthropomorphic movement of the supporting leg during the single-support phase of movement, and the control actions required for its implementation has been found. The significance of the results obtained in the process of modeling lies in the ability to create active exoskeletons, prostheses in medicine, anthropomorphic robots, and spacesuits that take into account the biomechanical features of the functioning of the human musculoskeletal system.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1242
Author(s):  
Dmitry Skvortsov ◽  
Sergey Kaurkin ◽  
Alexey Prizov ◽  
Aljona Altukhova ◽  
Alexander Troitskiy ◽  
...  

Deforming osteoarthritis (OA) of the knee is a progressive disease associated with pain and compromised function of the joint. Typical biomechanical modifications in the gait of subjects with medial knee OA are characterized by decreased gait speed and overload on the affected limb. The borderline stage for conservative versus surgical management is Grade II OA. The aim of this research was to study preoperatively the specific features of gait, knee, and hip function in patients with Grade II medial OA. We examined 26 patients with Grade II unilateral gonarthritis with varus deformity and 20 healthy adults. Biomechanical parameters of gait were recorded using an inertial sensor system. The gait cycle (GC) slightly increased both for the affected and for the intact limb. The hip joint movements showed significant symmetrical reduction in the first flexion amplitude, as well as a symmetrical delay in full hip extension at the end of the stance phase. In the knee, the first flexion amplitude was significantly reduced on the affected side compared to healthy control. The extension amplitude in the single support phase was significantly increased in both the affected and the intact lower limbs. The swing amplitude was significantly reduced on the affected side. On the affected side, the changes were more pronounced, both in incidence and in severity. The affected knee showed a syndrome of three reduced amplitudes. In patients, walking is characterized by several groups of symptoms: those of unloading of the affected limb, those of limiting the load on the affected joint and the musculoskeletal system as a whole, and those of gait harmonization. The symptoms of unloading the affected side and those of harmonization are the common symptoms of adaptation, typical for several pathological conditions with a relatively preserved function. The intensity of the observed symptoms can help assess changes in the subject’s functional condition over time and during the treatment.


2020 ◽  
Author(s):  
Stella Diniz Urban ◽  
Bruno Vilhena Adorno

This paper presents a novel method to control a bipedal walking based on quadratic programming and differential inequalities using geometric primitives. We allow the center of mass to move anywhere inside the support polygon during the walking cycle, as opposed to classic methods, which usually rely on tracking a desired trajectory for the zero moment point. The constraints keep the robot balance, the pelvis above a minimum height, and prevent the violation of joint limits during the complete walking cycle. Simulation results using the legs of the Poppy humanoid robot show that the trajectories of the closed-loop system converge to the desired center of mass position during the double support phase and the swing foot's trajectories converge to the desired pose during the single support phase while all constraints are obeyed.


Author(s):  
Wulandari Puspita Sari ◽  
R. Sanggar Dewanto ◽  
Dadet Pramadihanto

Locomotion of humanoid robot depends on the mechanical characteristic of the robot. Walking on descending stairs with integrated control systems for the humanoid robot is proposed. The analysis of trajectory for descending stairs is calculated by the constrains of step length stair using fuzzy algorithm. The established humanoid robot on dynamically balance on this matter of zero moment point has been pretended to be consisting of single support phase and double support phase. Walking transition from single support phase to double support phase is needed for a smooth transition cycle. To accomplish the problem, integrated motion and controller are divided into two conditions: motion working on offline planning and controller working online walking gait generation. To solve the defect during locomotion of the humanoid robot, it is directly controlled by the fuzzy logic controller. This paper verified the simulation and the experiment for descending stair of KMEI humanoid robot. 


Author(s):  
Taesang Lee ◽  
Myeounggon Lee ◽  
Changhong Youm ◽  
Byungjoo Noh ◽  
Hwayoung Park

This study investigates the gait characteristics of elderly women, aged more than 65 years, with subthreshold insomnia stage at various walking speeds. A total of 392 participants (insomnia: 202 and controls: 190) wearing shoe-type inertial measurement units completed walking tests on a treadmill for a duration of 1 min at slower, preferred, and faster speeds. The insomnia group indicated lower pace parameters (range of Cohen’s d: 0.283–0.499) and the single support phase (Cohen’s d: 0.237), greater gait variability (range of Cohen’s d: 0.217–0.506), and bilateral coordination (range of Cohen’s d: 0.254–0.319), compared with their age-matched controls; the coefficient of variance (CV) of the stance phase at the faster speed condition was a crucial variable for distinguishing between insomnia and control groups. In addition, the insomnia group demonstrated insufficient gait adaptation at the slower and preferred speeds, as indicated by the CVs of the stride length, stride time, and step time. In particular, participants with worsened insomnia symptoms or sleep problems showed that these worse gait patterns may increase the potential risk of falling in elderly women. Thus, elderly women with subthreshold insomnia stage need to improve their sleep quality to enhance their physical functions.


Sign in / Sign up

Export Citation Format

Share Document