Fractional stochastic resonance multi-parameter adaptive optimization algorithm based on genetic algorithm

2018 ◽  
Vol 32 (22) ◽  
pp. 16807-16818 ◽  
Author(s):  
Yongjun Zheng ◽  
Ming Huang ◽  
Yi Lu ◽  
Wenjun Li
2021 ◽  
Vol 2 (2) ◽  
pp. 1-13
Author(s):  
Seid Miad Zandavi ◽  
Vera Chung ◽  
Ali Anaissi

The scheduling of multi-user remote laboratories is modeled as a multimodal function for the proposed optimization algorithm. The hybrid optimization algorithm, hybridization of the Nelder-Mead Simplex algorithm, and Non-dominated Sorting Genetic Algorithm (NSGA), named Simplex Non-dominated Sorting Genetic Algorithm (SNSGA), is proposed to optimize the timetable problem for the remote laboratories to coordinate shared access. The proposed algorithm utilizes the Simplex algorithm in terms of exploration and NSGA for sorting local optimum points with consideration of potential areas. SNSGA is applied to difficult nonlinear continuous multimodal functions, and its performance is compared with hybrid Simplex Particle Swarm Optimization, Simplex Genetic Algorithm, and other heuristic algorithms. The results show that SNSGA has a competitive performance to address timetable problems.


2016 ◽  
Vol 58 (5) ◽  
pp. 246-250
Author(s):  
Weilei Mu ◽  
Guijie Liu ◽  
Xinbao Wang ◽  
Peng Liu ◽  
Anyi Wang

Author(s):  
RASHI VOHRA ◽  
BRAJESH PATEL

The utmost negative impact of advancement of technology is an exponential increase in security threats, due to which tremendous demand for effective electronic security is increasing importantly. The principles of any security mechanism are confidentiality, authentication, integrity, non-repudiation, access control and availability. Cryptography is an essential aspect for secure communications. Many chaotic cryptosystem has been developed, as a result of the interesting relationship between the two field chaos and cryptography phenomenological behavior. In this paper, an overview of cryptography, optimization algorithm and chaos theory is provided and a novel approach for encryption and decryption based on chaos and optimization algorithms is discussed. In this article, the basic idea is to encrypt and decrypt the information using the concept of genetic algorithm with the pseudorandom sequence further used as a key in genetic algorithm operation for encryption: which is generated by application of chaotic map. This attempt result in good desirable cryptographic properties as a change in key will produce undesired result in receiver side. The suggested approach complements standard, algorithmic procedures, providing security solutions with novel features.


Sign in / Sign up

Export Citation Format

Share Document