Small vehicle classification in the wild using generative adversarial network

Author(s):  
Xu Wang ◽  
Xiaoming Chen ◽  
Yanping Wang
Author(s):  
Shuaitao Zhang ◽  
Yuliang Liu ◽  
Lianwen Jin ◽  
Yaoxiong Huang ◽  
Songxuan Lai

A new method is proposed for removing text from natural images. The challenge is to first accurately localize text on the stroke-level and then replace it with a visually plausible background. Unlike previous methods that require image patches to erase scene text, our method, namely ensconce network (EnsNet), can operate end-to-end on a single image without any prior knowledge. The overall structure is an end-to-end trainable FCN-ResNet-18 network with a conditional generative adversarial network (cGAN). The feature of the former is first enhanced by a novel lateral connection structure and then refined by four carefully designed losses: multiscale regression loss and content loss, which capture the global discrepancy of different level features; texture loss and total variation loss, which primarily target filling the text region and preserving the reality of the background. The latter is a novel local-sensitive GAN, which attentively assesses the local consistency of the text erased regions. Both qualitative and quantitative sensitivity experiments on synthetic images and the ICDAR 2013 dataset demonstrate that each component of the EnsNet is essential to achieve a good performance. Moreover, our EnsNet can significantly outperform previous state-of-the-art methods in terms of all metrics. In addition, a qualitative experiment conducted on the SBMNet dataset further demonstrates that the proposed method can also preform well on general object (such as pedestrians) removal tasks. EnsNet is extremely fast, which can preform at 333 fps on an i5-8600 CPU device.


2019 ◽  
Vol 94 ◽  
pp. 74-86 ◽  
Author(s):  
Yongqiang Zhang ◽  
Mingli Ding ◽  
Yancheng Bai ◽  
Bernard Ghanem

2020 ◽  
Vol 128 (6) ◽  
pp. 1810-1828 ◽  
Author(s):  
Yongqiang Zhang ◽  
Yancheng Bai ◽  
Mingli Ding ◽  
Bernard Ghanem

Author(s):  
Shengchuan Zhang ◽  
Rongrong Ji ◽  
Jie Hu ◽  
Yue Gao ◽  
Chia-Wen Lin

Despite the extensive progress in face sketch synthesis, existing methods are mostly workable under constrained conditions, such as fixed illumination, pose, background and ethnic origin that are hardly to control in real-world scenarios. The key issue lies in the difficulty to use data under fixed conditions to train a model against imaging variations. In this paper, we propose a novel generative adversarial network termed pGAN, which can generate face sketches efficiently using training data under fixed conditions and handle the aforementioned uncontrolled conditions. In pGAN, we embed key photo priors into the process of synthesis and design a parametric sigmoid activation function for compensating illumination variations. Compared to the existing methods, we quantitatively demonstrate that the proposed method can work well on face photos in the wild.


Author(s):  
Jian Zhao ◽  
Lin Xiong ◽  
Yu Cheng ◽  
Yi Cheng ◽  
Jianshu Li ◽  
...  

Learning from synthetic faces, though perhaps appealing for high data efficiency, may not bring satisfactory performance due to the distribution discrepancy of the synthetic and real face images. To mitigate this gap, we propose a 3D-Aided Deep Pose-Invariant Face Recognition Model (3D-PIM), which automatically recovers realistic frontal faces from arbitrary poses through a 3D face model in a novel way. Specifically, 3D-PIM incorporates a simulator with the aid of a 3D Morphable Model (3D MM) to obtain shape and appearance prior for accelerating face normalization learning, requiring less training data. It further leverages a global-local Generative Adversarial Network (GAN) with multiple critical improvements as a refiner to enhance the realism of both global structures and local details of the face simulator’s output using unlabelled real data only, while preserving the identity information. Qualitative and quantitative experiments on both controlled and in-the-wild benchmarks clearly demonstrate superiority of the proposed model over state-of-the-arts.


2017 ◽  
Author(s):  
Benjamin Sanchez-Lengeling ◽  
Carlos Outeiral ◽  
Gabriel L. Guimaraes ◽  
Alan Aspuru-Guzik

Molecular discovery seeks to generate chemical species tailored to very specific needs. In this paper, we present ORGANIC, a framework based on Objective-Reinforced Generative Adversarial Networks (ORGAN), capable of producing a distribution over molecular space that matches with a certain set of desirable metrics. This methodology combines two successful techniques from the machine learning community: a Generative Adversarial Network (GAN), to create non-repetitive sensible molecular species, and Reinforcement Learning (RL), to bias this generative distribution towards certain attributes. We explore several applications, from optimization of random physicochemical properties to candidates for drug discovery and organic photovoltaic material design.


Sign in / Sign up

Export Citation Format

Share Document