Data-driven mechanism based on fuzzy Lagrangian twin parametric-margin support vector machine for biomedical data analysis

Author(s):  
Deepak Gupta ◽  
Parashjyoti Borah ◽  
Usha Mary Sharma ◽  
Mukesh Prasad
2022 ◽  
pp. 146808742110707
Author(s):  
Aran Mohammad ◽  
Reza Rezaei ◽  
Christopher Hayduk ◽  
Thaddaeus Delebinski ◽  
Saeid Shahpouri ◽  
...  

The development of internal combustion engines is affected by the exhaust gas emissions legislation and the striving to increase performance. This demands for engine-out emission models that can be used for engine optimization for real driving emission controls. The prediction capability of physically and data-driven engine-out emission models is influenced by the system inputs, which are specified by the user and can lead to an improved accuracy with increasing number of inputs. Thereby the occurrence of irrelevant inputs becomes more probable, which have a low functional relation to the emissions and can lead to overfitting. Alternatively, data-driven methods can be used to detect irrelevant and redundant inputs. In this work, thermodynamic states are modeled based on 772 stationary measured test bench data from a commercial vehicle diesel engine. Afterward, 37 measured and modeled variables are led into a data-driven dimensionality reduction. For this purpose, approaches of supervised learning, such as lasso regression and linear support vector machine, and unsupervised learning methods like principal component analysis and factor analysis are applied to select and extract the relevant features. The selected and extracted features are used for regression by the support vector machine and the feedforward neural network to model the NOx, CO, HC, and soot emissions. This enables an evaluation of the modeling accuracy as a result of the dimensionality reduction. Using the methods in this work, the 37 variables are reduced to 25, 22, 11, and 16 inputs for NOx, CO, HC, and soot emission modeling while maintaining the accuracy. The features selected using the lasso algorithm provide more accurate learning of the regression models than the extracted features through principal component analysis and factor analysis. This results in test errors RMSETe for modeling NOx, CO, HC, and soot emissions 19.22 ppm, 6.46 ppm, 1.29 ppm, and 0.06 FSN, respectively.


2019 ◽  
Vol 1 (1) ◽  
pp. 483-491 ◽  
Author(s):  
Makhamisa Senekane

The ubiquity of data, including multi-media data such as images, enables easy mining and analysis of such data. However, such an analysis might involve the use of sensitive data such as medical records (including radiological images) and financial records. Privacy-preserving machine learning is an approach that is aimed at the analysis of such data in such a way that privacy is not compromised. There are various privacy-preserving data analysis approaches such as k-anonymity, l-diversity, t-closeness and Differential Privacy (DP). Currently, DP is a golden standard of privacy-preserving data analysis due to its robustness against background knowledge attacks. In this paper, we report a scheme for privacy-preserving image classification using Support Vector Machine (SVM) and DP. SVM is chosen as a classification algorithm because unlike variants of artificial neural networks, it converges to a global optimum. SVM kernels used are linear and Radial Basis Function (RBF), while ϵ -differential privacy was the DP framework used. The proposed scheme achieved an accuracy of up to 98%. The results obtained underline the utility of using SVM and DP for privacy-preserving image classification.


2020 ◽  
Vol 211 ◽  
pp. 109795 ◽  
Author(s):  
Xiang Zhou ◽  
Ling Xu ◽  
Jingsi Zhang ◽  
Bing Niu ◽  
Maohui Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document