scholarly journals Differentially Private Image Classification Using Support Vector Machine and Differential Privacy

2019 ◽  
Vol 1 (1) ◽  
pp. 483-491 ◽  
Author(s):  
Makhamisa Senekane

The ubiquity of data, including multi-media data such as images, enables easy mining and analysis of such data. However, such an analysis might involve the use of sensitive data such as medical records (including radiological images) and financial records. Privacy-preserving machine learning is an approach that is aimed at the analysis of such data in such a way that privacy is not compromised. There are various privacy-preserving data analysis approaches such as k-anonymity, l-diversity, t-closeness and Differential Privacy (DP). Currently, DP is a golden standard of privacy-preserving data analysis due to its robustness against background knowledge attacks. In this paper, we report a scheme for privacy-preserving image classification using Support Vector Machine (SVM) and DP. SVM is chosen as a classification algorithm because unlike variants of artificial neural networks, it converges to a global optimum. SVM kernels used are linear and Radial Basis Function (RBF), while ϵ -differential privacy was the DP framework used. The proposed scheme achieved an accuracy of up to 98%. The results obtained underline the utility of using SVM and DP for privacy-preserving image classification.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Haoran Li ◽  
Li Xiong ◽  
Lucila Ohno-Machado ◽  
Xiaoqian Jiang

Data sharing is challenging but important for healthcare research. Methods for privacy-preserving data dissemination based on the rigorous differential privacy standard have been developed but they did not consider the characteristics of biomedical data and make full use of the available information. This often results in too much noise in the final outputs. We hypothesized that this situation can be alleviated by leveraging a small portion of open-consented data to improve utility without sacrificing privacy. We developed a hybrid privacy-preserving differentially private support vector machine (SVM) model that uses public data and private data together. Our model leverages the RBF kernel and can handle nonlinearly separable cases. Experiments showed that this approach outperforms two baselines: (1) SVMs that only use public data, and (2) differentially private SVMs that are built from private data. Our method demonstrated very close performance metrics compared to nonprivate SVMs trained on the private data.


2010 ◽  
Vol 19 (11) ◽  
pp. 2983-2999 ◽  
Author(s):  
Francesca Bovolo ◽  
Lorenzo Bruzzone ◽  
Lorenzo Carlin

2007 ◽  
pp. 341-353
Author(s):  
Toru Fujinaka ◽  
Michifumi Yoshioka ◽  
Sigeru Omatu

2020 ◽  
Author(s):  
Harith Al-Sahaf ◽  
Mengjie Zhang ◽  
M Johnston

In machine learning, it is common to require a large number of instances to train a model for classification. In many cases, it is hard or expensive to acquire a large number of instances. In this paper, we propose a novel genetic programming (GP) based method to the problem of automatic image classification via adopting a one-shot learning approach. The proposed method relies on the combination of GP and Local Binary Patterns (LBP) techniques to detect a predefined number of informative regions that aim at maximising the between-class scatter and minimising the within-class scatter. Moreover, the proposed method uses only two instances of each class to evolve a classifier. To test the effectiveness of the proposed method, four different texture data sets are used and the performance is compared against two other GP-based methods namely Conventional GP and Two-tier GP. The experiments revealed that the proposed method outperforms these two methods on all the data sets. Moreover, a better performance has been achieved by Naïve Bayes, Support Vector Machine, and Decision Trees (J48) methods when extracted features by the proposed method have been used compared to the use of domain-specific and Two-tier GP extracted features. © Springer International Publishing 2013.


2021 ◽  
Author(s):  
Jude TCHAYE-KONDI ◽  
Yanlong Zhai ◽  
Liehuang Zhu

<div>We address privacy and latency issues in the edge/cloud computing environment while training a centralized AI model. In our particular case, the edge devices are the only data source for the model to train on the central server. Current privacy-preserving and reducing network latency solutions rely on a pre-trained feature extractor deployed on the devices to help extract only important features from the sensitive dataset. However, finding a pre-trained model or pubic dataset to build a feature extractor for certain tasks may turn out to be very challenging. With the large amount of data generated by edge devices, the edge environment does not really lack data, but its improper access may lead to privacy concerns. In this paper, we present DeepGuess , a new privacy-preserving, and latency aware deeplearning framework. DeepGuess uses a new learning mechanism enabled by the AutoEncoder(AE) architecture called Inductive Learning, which makes it possible to train a central neural network using the data produced by end-devices while preserving their privacy. With inductive learning, sensitive data remains on devices and is not explicitly involved in any backpropagation process. The AE’s Encoder is deployed on devices to extracts and transfers important features to the server. To enhance privacy, we propose a new local deferentially private algorithm that allows the Edge devices to apply random noise to features extracted from their sensitive data before transferred to an untrusted server. The experimental evaluation of DeepGuess demonstrates its effectiveness and ability to converge on a series of experiments.</div>


2020 ◽  
Vol 8 (2) ◽  
pp. 610-622 ◽  
Author(s):  
Ximeng Liu ◽  
Robert H. Deng ◽  
Kim-Kwang Raymond Choo ◽  
Yang Yang

Sign in / Sign up

Export Citation Format

Share Document