Edge computing clone node recognition system based on machine learning

Author(s):  
Xiang Xiao ◽  
Ming Zhao
Author(s):  
Yu Shao ◽  
Xinyue Wang ◽  
Wenjie Song ◽  
Sobia Ilyas ◽  
Haibo Guo ◽  
...  

With the increasing aging population in modern society, falls as well as fall-induced injuries in elderly people become one of the major public health problems. This study proposes a classification framework that uses floor vibrations to detect fall events as well as distinguish different fall postures. A scaled 3D-printed model with twelve fully adjustable joints that can simulate human body movement was built to generate human fall data. The mass proportion of a human body takes was carefully studied and was reflected in the model. Object drops, human falling tests were carried out and the vibration signature generated in the floor was recorded for analyses. Machine learning algorithms including K-means algorithm and K nearest neighbor algorithm were introduced in the classification process. Three classifiers (human walking versus human fall, human fall versus object drop, human falls from different postures) were developed in this study. Results showed that the three proposed classifiers can achieve the accuracy of 100, 85, and 91%. This paper developed a framework of using floor vibration to build the pattern recognition system in detecting human falls based on a machine learning approach.


Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Kevin Page ◽  
Max Van Kleek ◽  
Omar Santos ◽  
...  

AbstractMultiple governmental agencies and private organisations have made commitments for the colonisation of Mars. Such colonisation requires complex systems and infrastructure that could be very costly to repair or replace in cases of cyber-attacks. This paper surveys deep learning algorithms, IoT cyber security and risk models, and established mathematical formulas to identify the best approach for developing a dynamic and self-adapting system for predictive cyber risk analytics supported with Artificial Intelligence and Machine Learning and real-time intelligence in edge computing. The paper presents a new mathematical approach for integrating concepts for cognition engine design, edge computing and Artificial Intelligence and Machine Learning to automate anomaly detection. This engine instigates a step change by applying Artificial Intelligence and Machine Learning embedded at the edge of IoT networks, to deliver safe and functional real-time intelligence for predictive cyber risk analytics. This will enhance capacities for risk analytics and assists in the creation of a comprehensive and systematic understanding of the opportunities and threats that arise when edge computing nodes are deployed, and when Artificial Intelligence and Machine Learning technologies are migrated to the periphery of the internet and into local IoT networks.


Author(s):  
Chaudhari Shraddha

Activity recognition in humans is one of the active challenges that find its application in numerous fields such as, medical health care, military, manufacturing, assistive techniques and gaming. Due to the advancements in technologies the usage of smartphones in human lives has become inevitable. The sensors in the smartphones help us to measure the essential vital parameters. These measured parameters enable us to monitor the activities of humans, which we call as human activity recognition. We have applied machine learning techniques on a publicly available dataset. K-Nearest Neighbors and Random Forest classification algorithms are applied. In this paper, we have designed and implemented an automatic human activity recognition system that independently recognizes the actions of the humans. This system is able to recognize the activities such as Laying, Sitting, Standing, Walking, Walking downstairs and Walking upstairs. The results obtained show that, the KNN and Random Forest Algorithms gives 90.22% and 92.70% respectively of overall accuracy in detecting the activities.


2021 ◽  
Author(s):  
Ghazaala Yasmin ◽  
ASIT KUMAR DAS ◽  
Janmenjoy Nayak ◽  
S Vimal ◽  
Soumi Dutta

Abstract Speech is one of the most delicate medium through which gender of the speakers can easily be identified. Though the related research has shown very good progress in machine learning but recently, deep learning has imparted a very good research area to explore the deficiency of gender discrimination using traditional machine learning techniques. In deep learning techniques, the speech features are automatically generated by the reinforcement learning from the raw data which have more discriminating power than the human generated features. But in some practical situations like gender recognition, it is observed that combination of both types of features sometimes provides comparatively better performance. In the proposed work, we have initially extracted and selected some informative and precise acoustic features relevant to gender recognition using entropy based information theory and Rough Set Theory (RST). Next, the audio speech signals are directly fed into the deep neural network model consists of Convolution Neural Network (CNN) and Gated Recurrent Unit network (GRUN) for extracting features useful for gender recognition. The RST selects precise and informative features, CNN extracts the locally encoded important features, and GRUN reduces the vanishing gradient and exploding gradient problems. Finally, a hybrid gender recognition system is developed combining both generated feature vectors. The developed model has been tested with five bench mark and a simulated dataset to evaluate its performance and it is observed that combined feature vector provides more effective gender recognition system specially when transgender is considered as a gender type together with male and female.


Author(s):  
Azamat Yeshmukhametov ◽  
Koichi Koganezawa ◽  
Zholdas Buribayev ◽  
Yedilkhan Amirgaliyev ◽  
Yoshio Yamamoto

Designing and development of agricultural robot is always a challenging issue, because of robot intends to work an unstructured environment and at the same time, it should be safe for the surrounded plants. Therefore, traditional robots cannot meet the high demands of modern challenges, such as working in confined and unstructured workspaces. Based on current issues, we developed a new tomato harvesting wire-driven discrete continuum robot arm with a flexible backbone structure for working in confined and extremely constrained spaces. Moreover, we optimized a tomato detaching process by using newly designed gripper with passive stem cutting function. Moreover, by designing the robot we also developed ripe tomato recognition by using machine learning. This paper explains the proposed continuum robot structure, gripper design, and development of tomato recognition system.


Sign in / Sign up

Export Citation Format

Share Document