scholarly journals A theory of spectral partitions of metric graphs

Author(s):  
James B. Kennedy ◽  
Pavel Kurasov ◽  
Corentin Léna ◽  
Delio Mugnolo

AbstractWe introduce an abstract framework for the study of clustering in metric graphs: after suitably metrising the space of graph partitions, we restrict Laplacians to the clusters thus arising and use their spectral gaps to define several notions of partition energies; this is the graph counterpart of the well-known theory of spectral minimal partitions on planar domains and includes the setting in Band et al. (Commun Math Phys 311:815–838, 2012) as a special case. We focus on the existence of optimisers for a large class of functionals defined on such partitions, but also study their qualitative properties, including stability, regularity, and parameter dependence. We also discuss in detail their interplay with the theory of nodal partitions. Unlike in the case of domains, the one-dimensional setting of metric graphs allows for explicit computation and analytic—rather than numerical—results. Not only do we recover the main assertions in the theory of spectral minimal partitions on domains, as studied in Conti et al. (Calc Var 22:45–72, 2005), Helffer et al. (Ann Inst Henri Poincaré Anal Non Linéaire 26:101–138, 2009), but we can also generalise some of them and answer (the graph counterparts of) a few open questions.

1999 ◽  
Vol 51 (5) ◽  
pp. 915-935 ◽  
Author(s):  
Zoltán M. Balogh ◽  
Christoph Leuenberger

AbstractConsider the polynomial hull of a smoothly varying family of strictly convex smooth domains fibered over the unit circle. It is well-known that the boundary of the hull is foliated by graphs of analytic discs. We prove that this foliation is smooth, and we show that it induces a complex flow of contactomorphisms. These mappings are quasiconformal in the sense of Korányi and Reimann. A similar bound on their quasiconformal distortion holds as in the one-dimensional case of holomorphic motions. The special case when the fibers are rotations of a fixed domain in C2 is studied in details.


1997 ◽  
Vol 56 (1) ◽  
pp. 119-134
Author(s):  
K. Sriskandarajah

We study the qualitative properties of the one dimensional analogue of the Helmholtz vorticity advection equation. The second order hyperbolic equation has the unusual characteristic of disturbances propagating at infinite speed. The global solution for Goursat data is given in closed form. We also obtain qualitative results on the nodal curve where the solution is zero. A related perturbation problem is considered and solutions for small data are obtained. The forced vorticity equation admits a class of soliton solutions.


1973 ◽  
Vol 10 (3) ◽  
pp. 397-423 ◽  
Author(s):  
Lee A. Bertram

Previously derived shock solutions for a perfectly conducting perfect gas are used to compute shock polars for the one-dimensional unsteady and two- dimensional non-aligned shock representations. A new special-case shock solution, having a downstream particle velocity relative to the shock equal to upstream Alfvén velocity, is obtained, in addition to exhaustive analytical classification schemes for the shock polars. Eight classes of one-dimensional polars and twelve classes of two-dimensional polars are identified.


1984 ◽  
Vol 32 (2) ◽  
pp. 197-205 ◽  
Author(s):  
B. Abraham-Shrauner

An exact solution for a temporally damped sinusoidal electric field which obeys the nonlinear, one-dimensional Vlasov-Maxwell equations is given. The electric field is a generalization of the O'Neil model electric field for Landau damping of plasma oscillations. The electric field is a special case of the form found from the invariance of the one-dimensional Vlasov equation under infinitesimal Lie group transformations. The time dependences of the damping decrement, of the wave-number and of the angular frequency are derived. Use of a time-dependent BGK one-particle distribution function is justified for weak damping where, in general, it is necessary to carry out a numerical calculation of the invariant of which the distribution function is a functional.


2012 ◽  
Vol 09 (03) ◽  
pp. 511-543 ◽  
Author(s):  
JUSTIN HOLMER ◽  
QUANHUI LIN

We show that, for the one-dimensional cubic NLS equation, widely separated equal amplitude in-phase solitons attract and opposite-phase solitons repel. Our result gives an exact description of the evolution of the two solitons valid until the solitons have moved a distance comparable to the logarithm of the initial separation. Our method does not use the inverse scattering theory and should be applicable to nonintegrable equations with local nonlinearities that support solitons with exponentially decaying tails. The result is presented as a special case of a general framework which also addresses, for example, the dynamics of single solitons subject to external forces.


Author(s):  
J. G. Burnell ◽  
A. A. Lacey ◽  
G. C. Wake

AbstractIn an earlier paper (Part I) the existence and some related properties of the solution to a coupled pair of nonlinear elliptic partial differential equations was considered. These equations arise when material is undergoing an exothermic chemical reaction which is sustained by the diffusion of a reactant. In this paper we consider the range of parameters for which the uniqueness of solution is assured and we also investigate the converse question of multiple solutions. The special case of the one dimensional shape of the infinite slab is investigated in full as this case admits to solution by integration.


2017 ◽  
Vol 5 (1) ◽  
pp. 58-77
Author(s):  
Mingji Zhang ◽  
Jianbao Zhang ◽  
Daniel Acheampong

Abstract We study a quasi-one-dimensional steady-state Poisson-Nernst-Planck model for ionic flows through membrane channels. Excess chemical potentials are included in this work to account for finite ion size effects. This is the main difference from the classical Poisson-Nernst-Planck models, which treat ion species as point charges and neglect ion-to-ion interactions. Due to the fact that most experiments (with some exceptions) can only measure the total current while individual fluxes contain much more information on channel functions, our main focus is to study the qualitative properties of ionic flows in terms of individual fluxes under electroneutrality conditions. Our result shows that, in addition to ion sizes, the property depends on multiple physical parameters such as boundary concentrations and potentials, diffusion coe-cients, and ion valences. For the relatively simple setting and assumptions of the model in this paper, we are able to characterize, almost completely, the distinct effects of the nonlinear interplay between these physical parameters. The boundaries of different parameter regions are identified through a number of critical potential values that are explicitly expressed in terms of the physical parameters.Numerical simulations are performed to detect the critical potentials and investigate the quantitative properties of ionic flows over different potential regions. In particular, a special case is studied in Section 5 without the assumption of electroneutrality conditions.


2015 ◽  
Vol 3 ◽  
Author(s):  
VJEKOSLAV KOVAČ ◽  
CHRISTOPH THIELE ◽  
PAVEL ZORIN-KRANICH

The so-called triangular Hilbert transform is an elegant trilinear singular integral form which specializes to many well-studied objects of harmonic analysis. We investigate $L^{p}$ bounds for a dyadic model of this form in the particular case when one of the functions on which it acts is essentially one dimensional. This special case still implies dyadic analogues of boundedness of the Carleson maximal operator and of the uniform estimates for the one-dimensional bilinear Hilbert transform.


Sign in / Sign up

Export Citation Format

Share Document