Cellular membrane fluidity measurement by fluorescence polarization in indomethacin-induced gastric cellular injury in vitro

2007 ◽  
Vol 42 (12) ◽  
pp. 939-946 ◽  
Author(s):  
Tsuyoshi Kaneko ◽  
Hirofumi Matsui ◽  
Osamu Shimokawa ◽  
Akira Nakahara ◽  
Ichinosuke Hyodo
1990 ◽  
Vol 125 (3) ◽  
pp. 387-396 ◽  
Author(s):  
E. A. Greenhalgh

ABSTRACT Progesterone production in vitro was measured in response to human chorionic gonadotrophin and phospholipase A2 using dispersed luteal cells from control and prostaglandin F2α (PGF2α)-treated rats. Highly purified luteal plasma membrane suspensions were prepared by partition distribution in dextranpolyethylene glycol, and membrane fluidity was measured by fluorescence polarization using the probe, trans-parinaric acid. Fluorescence polarization was highly dependent upon calcium, and was markedly affected by PGF2α treatment. No support was found for the theory that bulk membrane fluidity has a role in receptor or enzyme hindrance in the induction of luteal cell regression. However, membrane phase transitions induced by calcium interaction with anionic phospholipids and free radical damage may be involved in regression of the rat corpus luteum. Journal of Endocrinology (1990) 125, 387–396


1981 ◽  
Vol 45 (01) ◽  
pp. 038-042 ◽  
Author(s):  
M E Pogliani ◽  
R Fantasia ◽  
G Lambertenghi-Deliliers ◽  
E Cofrancesco

SummaryThe influence of Daunorubicin on some platelet functions in vitro was investigated, using different concentrations of the drug (0.01-0.02-0.04 μg/ml). Daunorubicin was shown to inhibit Collagen and Thrombin induced platelet aggregation and the intensity of inhibition depended on both drug concentration and the time of preincubation.Daunorubicin was also shown to inhibit the release reaction, the platelet prostaglandin pathway and the availability platelet factor 3; the drug at concentrations for clinical use does not damage the platelet membrane, as is the case with the freezing and thawing test, in platelet uptake of 14C-serotonin and as confirmed by the electron microscope. When very high doses (0.16 mg) of Daunorubicin are used, lysis of the platelets can be observed and this is confirmed under the electron microscope by the presence of empty platelets with fractures at the level of the cytoplasmic membrane.Finally, Daunorubicin causes irreversible inhibition of reptilase clot-retraction, even if this is less severe than with Vincristine. Working with gel-filtered platelets, it would appear that the inhibition exercised by the drug on platelet reactions is not caused through modifications in Ca++ metabolism.The authors suggest that Daunorubicin, at the dosages used clinically, induces in vitro thrombocytopathy without damaging the cellular membrane as confirmed by the electron microscope.This impairment of platelet functions could play a part in hemorrhagic diathesis observed during Daunorubicin therapy.


Author(s):  
Xiaoming He ◽  
Shawn Mcgee ◽  
James E. Coad ◽  
Paul A. Iaizzo ◽  
David J. Swanlund ◽  
...  

In this paper, we report on the characterization of microwave therapy of normal porcine kidneys both in vitro and in vivo. This technology is being developed for eventual use in the treatment of small renal cell carcinoma (RCC) by minimally invasive procedures. During experiments, microwave energy was applied through an interstitial microwave probe (Urologix, Plymouth, MN) to the kidney cortex with occasional involvement of the kidney medulla. The thermal histories at several locations were recorded. After treatment, the kidneys were bisected and small tissue slices were cut out at approximately the same depth as the thermal probes. The tissue slices were further processed for histological study. Both cellular injury and the area of microvascular stasis were quantitatively evaluated by histology. Absolute rate kinetic models of cellular injury and vascular stasis were developed and fit to this data. A 3-D finite element thermal model based on the Pennes Bioheat equation was developed and solved using a commercial software package (ANSYS, V5.7). The Specific Absorption Rate (SAR) of the microwave probe was measured experimentally in tissue equivalent gel-like solution. The thermal model was first validated by the measured in vitro thermal histories. It was then used to determine the blood perfusion term in vivo.


1974 ◽  
Vol 14 (1) ◽  
pp. 187-196
Author(s):  
J. C. APPLETON ◽  
R. B. KEMP

The initial aggregation of trypsin-dissociated cells from the skeletal muscle tissue of 9-day-old chick embryos in the presence of cytochalasins A and B was studied in order to discover the effects of these agents on contact and adhesion. Cytochalasin B (3 µg/ml) had a negligible effect on the rate of aggregation of cells over an 8-h period, but cytochalasin A at concentrations between 3 and 20 µg/ml markedly inhibited aggregation. Both agents altered the shape and size of aggregates and caused cells at their periphery to appear more spherical. The oxygen uptake of the treated cells was not noticeably different from that of the controls, despite the severe inhibition of isotopic carbon dioxide evolution. The effect of cytochalasin B on cell aggregation was reversible and although the cytochalasin A effect could not be abolished on return to medium free of A, the unaltered oxygen consumption was taken as an indication that permanent cellular injury did not occur. The effect of the cytochalasins on aggregate structure was interpreted on the basis of arrested cellular motility, but the singular inhibition by cytochalasin A of the rate of aggregation must await final confirmation of its site of action.


2018 ◽  
Vol 201 (1) ◽  
Author(s):  
Kelly M. Storek ◽  
Rajesh Vij ◽  
Dawei Sun ◽  
Peter A. Smith ◽  
James T. Koerber ◽  
...  

ABSTRACTIntegral β-barrel membrane proteins are folded and inserted into the Gram-negative bacterial outer membrane by the β-barrel assembly machine (BAM). This essential complex, composed of a β-barrel protein, BamA, and four lipoproteins, BamB, BamC, BamD, and BamE, resides in the outer membrane, a unique asymmetrical lipid bilayer that is difficult to recapitulatein vitro. Thus, the probing of BAM function in living cells is critical to fully understand the mechanism of β-barrel folding. We recently identified an anti-BamA monoclonal antibody, MAB1, that is a specific and potent inhibitor of BamA function. Here, we show that the inhibitory effect of MAB1 is enhanced when BAM function is perturbed by either lowering the level of BamA or removing the nonessential BAM lipoproteins, BamB, BamC, or BamE. The disruption of BAM reduces BamA activity, increases outer membrane (OM) fluidity, and activates the σEstress response, suggesting the OM environment and BAM function are interconnected. Consistent with this idea, an increase in the membrane fluidity through changes in the growth environment or alterations to the lipopolysaccharide in the outer membrane is sufficient to provide resistance to MAB1 and enable the BAM to tolerate these perturbations. Amino acid substitutions in BamA at positions in the outer membrane spanning region or the periplasmic space remote from the extracellular MAB1 binding site also provide resistance to the inhibitory antibody. Our data highlight that the outer membrane environment is a critical determinant in the efficient and productive folding of β-barrel membrane proteins by BamA.IMPORTANCEBamA is an essential component of the β-barrel assembly machine (BAM) in the outer membranes of Gram-negative bacteria. We have used a recently described inhibitory anti-BamA antibody, MAB1, to identify the molecular requirements for BAM function. Resistance to this antibody can be achieved through changes to the outer membrane or by amino acid substitutions in BamA that allosterically affect the response to MAB1. Sensitivity to MAB1 is achieved by perturbing BAM function. By using MAB1 activity and functional assays as proxies for BAM function, we link outer membrane fluidity to BamA activity, demonstrating that an increase in membrane fluidity sensitizes the cells to BAM perturbations. Thus, the search for potential inhibitors of BamA function must consider the membrane environment in which β-barrel folding occurs.


2020 ◽  
Vol 14 (1) ◽  
pp. 34-47
Author(s):  
Hironori Tsuchiya ◽  
Maki Mizogami

Introduction: Plasma membranes are not the homogeneous bilayers of uniformly distributed lipids but the lipid complex with laterally separated lipid raft membrane domains, which provide receptor, ion channel and enzyme proteins with a platform. The aim of this article is to review the mechanistic interaction of drugs with membrane lipid rafts and address the question whether drugs induce physicochemical changes in raft-constituting and raft-surrounding membranes. Methods: Literature searches of PubMed/MEDLINE and Google Scholar databases from 2000 to 2020 were conducted to include articles published in English in internationally recognized journals. Collected articles were independently reviewed by title, abstract and text for relevance. Results: The literature search indicated that pharmacologically diverse drugs interact with raft model membranes and cellular membrane lipid rafts. They could physicochemically modify functional protein-localizing membrane lipid rafts and the membranes surrounding such domains, affecting the raft organizational integrity with the resultant exhibition of pharmacological activity. Raft-acting drugs were characterized as ones to decrease membrane fluidity, induce liquid-ordered phase or order plasma membranes, leading to lipid raft formation; and ones to increase membrane fluidity, induce liquid-disordered phase or reduce phase transition temperature, leading to lipid raft disruption. Conclusion: Targeting lipid raft membrane domains would open a new way for drug design and development. Since angiotensin-converting enzyme 2 receptors which are a cell-specific target of and responsible for the cellular entry of novel coronavirus are localized in lipid rafts, agents that specifically disrupt the relevant rafts may be a drug against coronavirus disease 2019.


2022 ◽  
Vol 9 (1) ◽  
pp. 24
Author(s):  
Liliya E. Nikitina ◽  
Roman S. Pavelyev ◽  
Ilmir R. Gilfanov ◽  
Sergei V. Kiselev ◽  
Zulfiya R. Azizova ◽  
...  

Platelet aggregation causes various diseases and therefore challenges the development of novel antiaggregatory drugs. In this study, we report the possible mechanism of platelet aggregation suppression by newly synthesized myrtenol-derived monoterpenoids carrying different heteroatoms (sulphur, oxygen, or nitrogen). Despite all tested compounds suppressed the platelet aggregation in vitro, the most significant effect was observed for the S-containing compounds. The molecular docking confirmed the putative interaction of all tested compounds with the platelet’s P2Y12 receptor suggesting that the anti-aggregation properties of monoterpenoids are implemented by blocking the P2Y12 function. The calculated binding force depended on heteroatom in monoterpenoids and significantly decreased with the exchanging of the sulphur atom with oxygen or nitrogen. On the other hand, in NMR studies on dodecyl phosphocholine (DPC) as a membrane model, only S-containing compound was found to be bound with DPC micelles surface. Meanwhile, no stable complexes between DPC micelles with either O- or N-containing compounds were observed. The binding of S-containing compound with cellular membrane reinforces the mechanical properties of the latter, thereby preventing its destabilization and subsequent clot formation on the phospholipid surface. Taken together, our data demonstrate that S-containing myrtenol-derived monoterpenoid suppresses the platelet aggregation in vitro via both membrane stabilization and blocking the P2Y12 receptor and, thus, appears as a promising agent for hemostasis control.


Sign in / Sign up

Export Citation Format

Share Document