promising agent
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 72)

H-INDEX

22
(FIVE YEARS 5)

2022 ◽  
Vol 9 (1) ◽  
pp. 24
Author(s):  
Liliya E. Nikitina ◽  
Roman S. Pavelyev ◽  
Ilmir R. Gilfanov ◽  
Sergei V. Kiselev ◽  
Zulfiya R. Azizova ◽  
...  

Platelet aggregation causes various diseases and therefore challenges the development of novel antiaggregatory drugs. In this study, we report the possible mechanism of platelet aggregation suppression by newly synthesized myrtenol-derived monoterpenoids carrying different heteroatoms (sulphur, oxygen, or nitrogen). Despite all tested compounds suppressed the platelet aggregation in vitro, the most significant effect was observed for the S-containing compounds. The molecular docking confirmed the putative interaction of all tested compounds with the platelet’s P2Y12 receptor suggesting that the anti-aggregation properties of monoterpenoids are implemented by blocking the P2Y12 function. The calculated binding force depended on heteroatom in monoterpenoids and significantly decreased with the exchanging of the sulphur atom with oxygen or nitrogen. On the other hand, in NMR studies on dodecyl phosphocholine (DPC) as a membrane model, only S-containing compound was found to be bound with DPC micelles surface. Meanwhile, no stable complexes between DPC micelles with either O- or N-containing compounds were observed. The binding of S-containing compound with cellular membrane reinforces the mechanical properties of the latter, thereby preventing its destabilization and subsequent clot formation on the phospholipid surface. Taken together, our data demonstrate that S-containing myrtenol-derived monoterpenoid suppresses the platelet aggregation in vitro via both membrane stabilization and blocking the P2Y12 receptor and, thus, appears as a promising agent for hemostasis control.


2022 ◽  
Vol 82 ◽  
Author(s):  
Y. Irnidayanti ◽  
D. R. Sutiono ◽  
N. Ibrahim ◽  
P. H. Wisnuwardhani ◽  
A. Santoso

Abstract Resveratrol, a natural polyphenol found in tempeh, has not been investigated especially in vitro as a neuroprotective agent against 2-methoxyethanol (2-ME)-induced beta-amyloid cytotoxicity. Beta amyloid peptides (Aβ) could initiate neurotoxic events and neuron-inflammatory response via microglial activation. However, it remains unknown whether the neurotoxic effect of beta-amyloid and/or associated with the potential of 2-ME to induce neurotoxic effects on primary culture of nerve cells induced by 2-ME. This study investigated potential neuroprotective of trans-resveratrol a promising agent tempeh and soybean seed coats-derived against beta-amyloid cytotoxicity on primary culture of nerve cells induced by 2-methoxyethanol. Biotium and MTT assays were used to analyze neurons, which were isolated from the cerebral cortex of fetal mice at gestation day 19 (GD-19). A standard solution of 2-methoxyethanol was dosed at 10 μL. The cultured cells were randomly divided into the following groups: (1) 2-ME group + resveratrol standard, (2) 2-ME group + resveratrol isolated from tempeh, (3) 2-ME group + resveratrol isolated from soybean seed coats, and (4) the control group, without the addition of either 2-ME or resveratrol. Exposure of the primary cortical neuron cells to beta-amyloid monoclonal antibody pre-incubated for 24 h with 10 µL of 4.2 µg/mL resveratrol and 7.5 mmol/l 2-methoxy-ethanol additions. Here, we report that the addition of 2-ME and resveratrol (standard and isolated from tempeh) of cell culture at concentrations of 1.4, 2.8 and 4.2 µg/mL showed that the majority of neurons grew well. In contrast, after exposure to 2-ME and Beta-amyloid, showed that glial activated. These findings demonstrate a role for resveratrol in neuroprotective-neurorescuing action.


Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 7
Author(s):  
Kyriakos C. Prousis ◽  
Stefanos Kikionis ◽  
Efstathia Ioannou ◽  
Silvia Morgana ◽  
Marco Faimali ◽  
...  

Marine biofouling is an epibiotic biological process that affects almost any kind of submerged surface, causing globally significant economic problems mainly for the shipping industry and aquaculture companies, and its prevention so far has been associated with adverse environmental effects for non-target organisms. Previously, we have identified bromosphaerol (1), a brominated diterpene isolated from the red alga Sphaerococcus coronopifolius, as a promising agent with significant antifouling activity, exerting strong anti-settlement activity against larvae of Amphibalanus (Balanus) amphitrite and very low toxicity. The significant antifouling activity and low toxicity of bromosphaerol (1) motivated us to explore its chemistry, aiming to optimize its antifouling potential through the preparation of a number of analogs. Following different synthetic routes, we successfully synthesized 15 structural analogs (2–16) of bromosphaerol (1), decorated with different functional groups. The anti-settlement activity (EC50) and the degree of toxicity (LC50) of the bromosphaerol derivatives were evaluated using cyprids and nauplii of the cirriped crustacean A. amphitrite as a model organism. Derivatives 2, 4, and 6–16 showed diverse levels of antifouling activity. Among them, compounds 9 and 13 can be considered as well-performing antifoulants, exerting their activity through a non-toxic mechanism.


2021 ◽  
pp. 106005
Author(s):  
Xiaolin Xiao ◽  
Qichao Hu ◽  
Xinyu Deng ◽  
Kaiyun Shi ◽  
Wenwen Zhang ◽  
...  

2021 ◽  
Vol 7 (3) ◽  
pp. 272-280
Author(s):  
Sergey S. Lugovskoy ◽  
◽  
Sofia S. Chernyaeva ◽  
Anna A. Peresypkina ◽  
Anna S. Pobeda ◽  
...  

Currently, there are no drugs for the specific treatment of hypertensive retinal changes. The main therapy is for the treatment of a systemic disease – hypertensive disease. Therefore, the search for ways of specific pharmacological correction of hypertensive retinal changes is of great interest. The aim of the study: To evaluate the correction possibility of retinal injuries with Semax in a rat model of hypertensive neuroretinopathy. Materials and methods: The model was performed by injection of N-nitro-L-arginine methyl ester (L-NAME) at a dose of 1.25 mg/100 g of rat mass within 28 days and a single increase in intraocular pressure (IOP) to 110 mmHg for 5 min. The retinoprotective effect of Semax at a dose of 7.2 μg/100 g of rat mass, in comparison with Picamilon at a dose of 3 mg/100 g of rat mass, was estimated by laser Doppler flowmetry (LDF) and electroretinography (ERG). Results: The use of Semax led to an increase in retinal perfusion by 62.7%, p < 0.05, in comparison with the group with the model, and by 9.9%, p < 0.05, in comparison with Picamilon; an increase in the b/a coefficient by 31.4% in comparison with the group with the model, p < 0.05, and by 14.6%, p < 0.05 in comparison with Picamilon. Conclusion: The neuroretinoprotective effect of Semax in correction of hypertensive retinal changes in rats may be due to the presence of neuroprotective, neurometabolic, antioxidant and endothelioprotective effects in Semax. Thus, Semax can be a promising agent in hypertensive neuroretinopathy treatment.


2021 ◽  
Vol 7 (10) ◽  
pp. 812
Author(s):  
Weslley Souza de Paiva ◽  
Moacir Fernandes Queiroz ◽  
Diego Araujo Sabry ◽  
André Luiz Cabral Monteiro de Azevedo Santiago ◽  
Guilherme Lanzi Sassaki ◽  
...  

Oxidative stress is the cause of numerous diseases in humans; therefore, there has been a continuous search for novel antioxidant molecules. Fungal chitosan is an attractive molecule that has several applications (antifungal, antibacterial, anticancer and antiparasitic action) owing to its unique characteristics; however, it exhibits low antioxidant activity. The aim of this study was to obtain fungal chitosan (Chit-F) from the fungus Rhizopus arrhizus and synthesize its derivative, fungal chitosan-gallic acid (Chit-FGal), as a novel antioxidant chitosan derivative for biomedical use. A low molecular weight Chi-F (~3.0 kDa) with a degree of deacetylation of 86% was obtained from this fungus. Chit-FGal (3.0 kDa) was synthesized by an efficient free radical-mediated method using hydrogen peroxide (H2O2) and ascorbic acid. Both Chit-F and Chit-FGal showed similar copper chelating activities; however, Chit-FGal was more efficient as an antioxidant, exhibiting twice the total antioxidant capacity than Chi-F (p < 0.05). Furthermore, H2O2 (0.06 M) promoted a 50% decrease in the viabilities of the 3T3 fibroblast cells. However, this effect was abolished in the presence of Chit-FGal (0.05–0.25 mg/mL), indicating that Chit-FGal protected the cells from oxidative damage. These results suggest that Chit-FGal may be a promising agent to combat oxidative stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuchao Chen ◽  
Yi Kuang ◽  
Liyang Shi ◽  
Xing Wang ◽  
Haoyu Fu ◽  
...  

Orobanche and Striga are parasitic weeds extremely well adapted to the life cycle of their host plants. They cannot be eliminated by conventional weed control methods. Suicidal germination induced by strigolactones (SLs) analogs is an option to control these weeds. Here, we reported two new halogenated (+)-GR24 analogs, named 7-bromo-GR24 (7BrGR24) and 7-fluoro-GR24 (7FGR24), which were synthesized using commercially available materials following simple steps. Both compounds strongly promoted seed germination of Orobanche cumana. Their EC50 values of 2.3±0.28×10−8M (7BrGR24) and 0.97±0.29×10−8M (7FGR24) were 3- and 5-fold lower, respectively, than those of (+)-GR24 and rac-GR24 (EC50=5.1±1.32–5.3±1.44×10−8; p&lt;0.05). The 7FGR24 was the strongest seed germination promoter tested, with a stimulation percentage of 62.0±9.1% at 1.0×10−8M and 90.9±3.8% at 1.0×10−6M. It showed higher binding affinity (IC50=0.189±0.012μM) for the SL receptor ShHTL7 than (+)-GR24 (IC50=0.248±0.032μM), rac-GR24 (IC50=0.319±0.032μM), and 7BrGR24 (IC50=0.521±0.087μM). Molecular docking experiments indicated that the binding affinity of both halogenated analogs to the strigolactone receptor OsD14 was similar to that of (+)-GR24. Our results indicate that 7FGR24 is a promising agent for the control of parasitic weeds.


Author(s):  
Junya de Lacorte Singulani ◽  
Lariane Teodoro Oliveira ◽  
Marina Dorisse Ramos ◽  
Nathália Ferreira Fregonezi ◽  
Paulo César Gomes ◽  
...  

Cryptococcosis is associated with high rates of morbidity and mortality, especially in AIDS patients. Its treatment is carried out by combining amphotericin B and azoles or flucytosine, which cause unavoidable toxicity issues to the host. Thus, the urgency in obtaining new antifungals drives the search for antimicrobial peptides (AMPs). This study aimed to extend the understanding of the mechanism of action of an AMP analog from wasps peptide toxins, MK58911-NH2, on Cryptococcus neoformans . It was also evaluated if MK58911-NH2 can act on cryptococcal cells in macrophages, biofilms, and an immersion zebrafish model of infection. Finally, we investigated the structure-antifungal action and the toxicity relation of MK58911-NH2 fragments and a derivative of this peptide (MH58911-NH2). The results demonstrated that MK58911-NH2 did not alter the fluorescence intensity of cell wall - binding dye calcofluor or capsule- binding dye 18b7 antibody-FITC of C. neoformans , but rather reduced the number and size of fungal cells. This activity reduced the fungal burden of C. neoformans both in macrophages and in zebrafish embryos as well as within biofilms. Three fragments of the MK58911-NH2 peptide showed no activity against Cryptococcus or toxicity in lung cells. The derivative peptide MH58911-NH2, in which the lysine residues of MK58911-NH2 were replaced by histidine, reduced the activity against extracellular and intracellular C. neoformans . On the other hand, it was active against biofilm, and reducing toxicity. In summary, the results showed that peptide MK58911-NH2 could be a promising agent against cryptococcosis. The work also opens a perspective for the verification of the antifungal activity of other derivatives.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1327
Author(s):  
Ngoc Anh Nguyen ◽  
Ngoc Tan Cao ◽  
Thi Huong Ha Nguyen ◽  
Jung-Hwan Ji ◽  
Gun Su Cha ◽  
...  

Phlorizin is the most abundant glucoside of phloretin from the apple tree and its products. Phlorizin and its aglycone phloretin are currently considered health-beneficial polyphenols from apples useful in treating hyperglycemia and obesity. Recently, we showed that phloretin could be regioselectively hydroxylated to make 3-OH phloretin by Bacillus megaterium CYP102A1 and human P450 enzymes. The 3-OH phloretin has a potent inhibitory effect on differentiating 3T3-L1 preadipocytes into adipocytes and lipid accumulation. The glucoside of 3-OH phloretin would be a promising agent with increased bioavailability and water solubility compared with its aglycone. However, procedures to make 3-OH phlorizin, a glucoside of 3-OH phloretin, using chemical methods, are not currently available. Here, a biocatalytic strategy for the efficient synthesis of a possibly valuable hydroxylated product, 3-OH phlorizin, was developed via CYP102A1-catalyzed regioselective hydroxylation. The production of 3-OH phlorizin by CYP102A1 was confirmed by HPLC and LC–MS spectroscopy in addition to enzymatic removal of its glucose moiety for comparison to 3-OH phloretin. Taken together, in this study, we found a panel of mutants from B. megaterium CYP102A1 could catalyze regioselective hydroxylation of phlorizin to produce 3-OH phlorizin, a catechol product.


Sign in / Sign up

Export Citation Format

Share Document