scholarly journals Interaction of drugs with lipid raft membrane domains as a possible target

2020 ◽  
Vol 14 (1) ◽  
pp. 34-47
Author(s):  
Hironori Tsuchiya ◽  
Maki Mizogami

Introduction: Plasma membranes are not the homogeneous bilayers of uniformly distributed lipids but the lipid complex with laterally separated lipid raft membrane domains, which provide receptor, ion channel and enzyme proteins with a platform. The aim of this article is to review the mechanistic interaction of drugs with membrane lipid rafts and address the question whether drugs induce physicochemical changes in raft-constituting and raft-surrounding membranes. Methods: Literature searches of PubMed/MEDLINE and Google Scholar databases from 2000 to 2020 were conducted to include articles published in English in internationally recognized journals. Collected articles were independently reviewed by title, abstract and text for relevance. Results: The literature search indicated that pharmacologically diverse drugs interact with raft model membranes and cellular membrane lipid rafts. They could physicochemically modify functional protein-localizing membrane lipid rafts and the membranes surrounding such domains, affecting the raft organizational integrity with the resultant exhibition of pharmacological activity. Raft-acting drugs were characterized as ones to decrease membrane fluidity, induce liquid-ordered phase or order plasma membranes, leading to lipid raft formation; and ones to increase membrane fluidity, induce liquid-disordered phase or reduce phase transition temperature, leading to lipid raft disruption. Conclusion: Targeting lipid raft membrane domains would open a new way for drug design and development. Since angiotensin-converting enzyme 2 receptors which are a cell-specific target of and responsible for the cellular entry of novel coronavirus are localized in lipid rafts, agents that specifically disrupt the relevant rafts may be a drug against coronavirus disease 2019.

2004 ◽  
Vol 78 (10) ◽  
pp. 5279-5287 ◽  
Author(s):  
Herman W. Favoreel ◽  
Thomas C. Mettenleiter ◽  
Hans J. Nauwynck

ABSTRACT Pseudorabies virus (PRV) is a swine alphaherpesvirus that is closely related to human herpes simplex virus (HSV). Both PRV and HSV express a variety of viral envelope glycoproteins in the plasma membranes of infected cells. Here we show that at least four major PRV glycoproteins (gB, gC, gD, and gE) in the plasma membrane of infected swine kidney cells and monocytes seem to be linked, since monospecific antibody-induced patching of any one of these proteins results in copatching of the others. Further, for all four PRV glycoproteins, monospecific antibody-induced patches were enriched in GM1, a typical marker of lipid raft microdomains, but were excluded for transferrin receptor, a nonraft marker, suggesting that these viral proteins may associate with lipid rafts. However, only gB and, to a lesser extent, gE were found in lipid raft fractions by using detergent floatation assays, indicating that gC and gD do not show strong lipid raft association. Addition of methyl-β-cyclodextrin (MCD), a cholesterol-depleting agent that is commonly used to disrupt lipid rafts, only slightly reduced copatching efficiency between the different viral proteins, indicating that other factors, perhaps tegument-glycoprotein interactions, may be important for the observed copatching events. On the other hand, MCD strongly reduced polarization of the antibody-induced viral glycoprotein patches to a cap structure, a gE-dependent process that has been described for specific PRV- and HSV-infected cells. Therefore, we hypothesize that efficient gE-mediated capping of antibody-antigen patches may require the lipid raft-associated signal transduction machinery.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1398
Author(s):  
Cristian Vergallo ◽  
Elisa Panzarini ◽  
Bernardetta Anna Tenuzzo ◽  
Stefania Mariano ◽  
Ada Maria Tata ◽  
...  

One of the most relevant drawbacks in medicine is the ability of drugs and/or imaging agents to reach cells. Nanotechnology opened new horizons in drug delivery, and silver nanoparticles (AgNPs) represent a promising delivery vehicle for their adjustable size and shape, high-density surface ligand attachment, etc. AgNPs cellular uptake involves different endocytosis mechanisms, including lipid raft-mediated endocytosis. Since static magnetic fields (SMFs) exposure induces plasma membrane perturbation, including the rearrangement of lipid rafts, we investigated whether SMF could increase the amount of AgNPs able to pass the peripheral blood lymphocytes (PBLs) plasma membrane. To this purpose, the effect of 6-mT SMF exposure on the redistribution of two main lipid raft components (i.e., disialoganglioside GD3, cholesterol) and on AgNPs uptake efficiency was investigated. Results showed that 6 mT SMF: (i) induces a time-dependent GD3 and cholesterol redistribution in plasma membrane lipid rafts and modulates gene expression of ATP-binding cassette transporter A1 (ABCA1), (ii) increases reactive oxygen species (ROS) production and lipid peroxidation, (iii) does not induce cell death and (iv) induces lipid rafts rearrangement, that, in turn, favors the uptake of AgNPs. Thus, it derives that SMF exposure could be exploited to enhance the internalization of NPs-loaded therapeutic or diagnostic molecules.


2016 ◽  
Vol 113 (3) ◽  
pp. 769-774 ◽  
Author(s):  
Xiaoli Sun ◽  
Yi Fu ◽  
Mingxia Gu ◽  
Lu Zhang ◽  
Dan Li ◽  
...  

Local flow patterns determine the uneven distribution of atherosclerotic lesions. Membrane lipid rafts and integrins are crucial for shear stress-regulated endothelial function. In this study, we investigate the role of lipid rafts and integrin α5 in regulating the inflammatory response in endothelial cells (ECs) under atheroprone versus atheroprotective flow. Lipid raft proteins were isolated from ECs exposed to oscillatory shear stress (OS) or pulsatile shear stress, and then analyzed by quantitative proteomics. Among 396 proteins redistributed in lipid rafts, integrin α5 was the most significantly elevated in lipid rafts under OS. In addition, OS increased the level of activated integrin α5 in lipid rafts through the regulation of membrane cholesterol and fluidity. Disruption of F-actin-based cytoskeleton and knockdown of caveolin-1 prevented the OS-induced integrin α5 translocation and activation. In vivo, integrin α5 activation and EC dysfunction were observed in the atheroprone areas of low-density lipoprotein receptor-deficient (Ldlr−/−) mice, and knockdown of integrin α5 markedly attenuated EC dysfunction in partially ligated carotid arteries. Consistent with these findings, mice with haploinsufficency of integrin α5 exhibited a reduction of atherosclerotic lesions in the regions under atheroprone flow. The present study has revealed an integrin- and membrane lipid raft-dependent mechanotransduction mechanism by which atheroprone flow causes endothelial dysfunction.


2017 ◽  
Vol 312 (5) ◽  
pp. C627-C637 ◽  
Author(s):  
Alexey M. Petrov ◽  
Violetta V. Kravtsova ◽  
Vladimir V. Matchkov ◽  
Alexander N. Vasiliev ◽  
Andrey L. Zefirov ◽  
...  

Marked loss of skeletal muscle mass occurs under various conditions of disuse, but the molecular and cellular mechanisms leading to atrophy are not completely understood. We investigate early molecular events that might play a role in skeletal muscle remodeling during mechanical unloading (disuse). The effects of acute (6–12 h) hindlimb suspension on the soleus muscles from adult rats were examined. The integrity of plasma membrane lipid rafts was tested utilizing cholera toxin B subunit or fluorescent sterols. In addition, resting intracellular Ca2+ level was analyzed. Acute disuse disturbed the plasma membrane lipid-ordered phase throughout the sarcolemma and was more pronounced in junctional membrane regions. Ouabain (1 µM), which specifically inhibits the Na-K-ATPase α2 isozyme in rodent skeletal muscles, produced similar lipid raft changes in control muscles but was ineffective in suspended muscles, which showed an initial loss of α2 Na-K-ATPase activity. Lipid rafts were able to recover with cholesterol supplementation, suggesting that disturbance results from cholesterol loss. Repetitive nerve stimulation also restores lipid rafts, specifically in the junctional sarcolemma region. Disuse locally lowered the resting intracellular Ca2+ concentration only near the neuromuscular junction of muscle fibers. Our results provide evidence to suggest that the ordering of lipid rafts strongly depends on motor nerve input and may involve interactions with the α2 Na-K-ATPase. Lipid raft disturbance, accompanied by intracellular Ca2+ dysregulation, is among the earliest remodeling events induced by skeletal muscle disuse.


2020 ◽  
Author(s):  
Arya Bagus Boedi Iswanto ◽  
Jong Cheol Shon ◽  
Minh Huy Vu ◽  
Ritesh Kumar ◽  
Kwang Hyeon Liu ◽  
...  

AbstractThe plasma membranes encapsulated in the plasmodesmata (PDs) with symplasmic nano-channels contain abundant lipid rafts, which are enriched by sphingolipids and sterols. The attenuation of sterol compositions has demonstrated the role played by lipid raft integrity in the intercellular trafficking of glycosylphosphatidylinositol (GPI)-anchored PD proteins, particularly affecting in the callose enhancement. The presence of callose at PD is tightly attributed to the callose metabolic enzymes, callose synthases (CalSs) and β-1,3-glucanases (BGs) in regulating callose accumulation and callose degradation, respectively. Sphingolipids have been implicated in signaling and membrane protein trafficking, however the underlying processes linking sphingolipid compositions to the control of symplasmic apertures remain unknown. A wide variety of sphingolipids in plants prompts us to investigate which sphingolipid molecules are important in regulating symplasmic apertures. Here, we demonstrate that perturbations of sphingolipid metabolism by introducing several potential sphingolipid (SL) pathway inhibitors and genetically modifying SL contents from two independent SL pathway mutants are able to modulate callose deposition to control symplasmic connectivity. Our data from pharmacological and genetic approaches show that the alteration in glucosylhydroxyceramides (GlcHCers) particularly disturb the secretory machinery for GPI-anchored PdBG2 protein, resulting in an over accumulated callose. Moreover, our results reveal that SL-enriched lipid rafts link symplasmic channeling to PD callose homeostasis by controlling the targeting of GPI-anchored PdBG2. This study elevates our understanding of the molecular linkage underlying intracellular trafficking and precise targeting to specific destination of GPI-anchored PD proteins incorporated with GlcHCers contents.


Author(s):  
Siddhartha Kumar Mishra ◽  
Yun Soo Bae ◽  
Yong-Moon Lee ◽  
Jae-Sung Kim ◽  
Seung Hyun Oh ◽  
...  

Chemosensitization of cancer cells with small molecules may improve the therapeutic index of antitumoral agents by making tumor cells sensitive to the drug regimen and thus overcome the treatment resistance and side effects of single therapy. Cell membrane lipid rafts are known to transduce various signaling events in cell proliferation. Sensitizing cancer cells may cause modulation of membrane lipid rafts which may potentially be used in improving anticancer drug response. Cedrol, a natural sesquiterpene alcohol, was used to treat human leukemia K562 and colon cancer HT-29 cell lines, and effects were observed. Cedrol decreased the cell viability by inducing apoptosis in both cell lines by activation of pro-apoptosis protein BID and inhibition of anti-apoptosis proteins Bcl-XL, Bcl-2, and XIAP. Cedrol activated the caspase-9-dependent mitochondrial intrinsic pathway of apoptosis. Furthermore, cedrol inhibited the levels of pAKT, pERK, and pmTOR proteins as well as nuclear and cytoplasmic levels of the p65 subunit of NF-κB. Cedrol caused redistribution of cholesterol and sphingomyelin contents from membrane lipid raft, which was confirmed by a combined additive effect with methyl-β-cyclodextrin (lipid raft-disrupting agent). Lipid raft destabilization by cedrol led to the increased production of ceramides and inhibition of membrane-bound NADPH oxidase 2 enzyme activity. Cholesterol/sphingomyelin-redistributing abilities of cedrol appear as a novel mechanism of growth inhibition of cancer cells. Cedrol can be classified as a natural lipid raft-disrupting agent with possibilities to be used in general studies involving membrane lipid raft modifications.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 3-3
Author(s):  
Magdalena Kucia ◽  
Kamila Bujko ◽  
Arjun Thapa ◽  
Janina Ratajczak ◽  
Mariusz Z Ratajczak

Background . It is known that prostaglandin E2 (PGE2) increases the homing and engraftment of hematopoietic stem/progenitor cells (HSPCs). However, aside from its role in upregulation of CXCR4 receptor expression on the surface of these cells, the exact mechanism has not been proposed. We have demonstrated in the past that an important step enabling the migration of HSPCs is the incorporation of CXCR4 into membrane lipid rafts on the leading surface (leading edge, in two dimensions) of migrating cells, which facilitates its interaction with cell migration signaling pathways (Wysoczynski M et al. Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood. 2005;105(1):40-48). Recently, we reported that Nlrp3 inflammasome-deficient HSPCs show a defect in lipid raft formation that results in defective migration of these cells in response to an SDF-1 gradient and their defective homing and engraftment after transplantation (Adamiak, M et al. Nlrp3 Inflammasome Signaling Regulates the Homing and Engraftment of Hematopoietic Stem Cells (HSPCs) by Enhancing Incorporation of CXCR4 Receptor into Membrane Lipid Rafts. Stem Cell Rev and Rep (2020). https://doi.org/10.1007/s12015-020-10005-w). An important activator of Nlrp3 inflammasomes is reactive oxygen species (ROS). Importantly, the enzyme that generates ROS, known as NADPH oxidase 2 (NOX2), is also associated with cell membrane lipid rafts. Hypothesis. Given the known roles of PGE2, membrane lipid rafts, and the Nlrp3 inflammasome in migration, homing, and engraftment of HSPCs, we hypothesized that PGE2 signaling promotes Nlrp3 inflammasome activation in a Nox2-ROS-dependent manner that results in incorporation of CXCR4 into membrane lipid rafts, which better explains the role of PGE2 in these phenomena.Materials and Methods. To test this hypothesis, murine SKL and human CD34+ cells enriched for HSPCs were stimulated with PGE2 to evaluate activation of genes of the Nlrp3 inflammasome complex at the mRNA and protein levels. Next, HSPCs from Nox2-KO mice were tested for membrane lipid raft formation in functional chemotaxis assays in response to SDF-1 gradients under conditions promoting membrane lipid raft formation. Formation of membrane lipid rafts in Nox2-KO cells was also evaluated by confocal analysis in the presence or absence of PGE2. Finally, the effect of the PGE2-Nox2-Nlrp3 inflammasome axis on the formation of membrane lipid rafts was evaluated in the presence of the ROS scavenger N-acethyl-cysteine (NAC). Results. We provide for the first time evidence that PGE2 activates Nlrp3 inflammasomes in HSPCs in a Nox2-ROS-dependent manner. This Nlrp3 inflammasome activation increases at the leading surface of migrating HSPCs with incorporation of the CXCR4 receptor into membrane lipid rafts. Formation of membrane lipid rafts was absent in Nox2-KO and Nlrp3-KO mouse HSPCs and in normal wild type cells after their exposure to NAC. Moreover, we also observed that Nox2-KO and Nlrp3-KO mice had a lower basal level of CXCR4 expression. Conclusions. Our results for the first time explain the role of PGE2 in promoting homing and migration of HSPCs, which occurs in response to PGE2 by activation of the Nox2-ROS-Nlrp3 inflammasome axis and thereby promotes incorporation of the CXCR4 receptor into membrane lipid rafts. Moreover, basal expression of the CXCR4 receptor was at a low level on the surface of HSPCs from Nlrp3-KO mice. Thus, our results provide evidence for the importance of the Nox2-ROS-Nlrp3 inflammasome axis in PGE2-mediated homing and engraftment of HSPCs and the role of PGE2-mediated lipid raft formation for optimal responsiveness of CXCR4 to SDF-1 in the BM microenvironment. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2164-2164
Author(s):  
Marcin Wysoczynski ◽  
Ryan Reca ◽  
Magda Kucia ◽  
Janina Ratajczak ◽  
Mariusz Z. Ratajczak

Abstract The a-chemokine stromal derived factor 1 (SDF-1) plays an important role in maturation/platelet formation of megakaryocytes (Megs), and we recently reported that the responsiveness of hematopoietic cells to SDF-1 is optimal when its corresponding CXCR4 receptor is included into membrane lipid rafts (Blood2005; 105:40). The formation of lipid rafts in vivo may be perturbed by cholesterol-lowering drugs, e.g., statins. Statins are effective in lowering LDL cholesterol and exert several pleiotropic effects on mature platelets, e.g., inhibit their activation. This latter effect is probably due to lowering of the cholesterol content in the membranes of mature platelets leading to the perturbation of membrane lipid raft formation which is required for proper platelet activation and signaling. However, under steady state conditions statins do not influence platelet production, no studies have been performed on their effects on platelet production in reactive thrombocytosis. In determining whether lipid raft formation plays a role in SDF-1- and stress-dependent thrombocytosis, we found that SDF-1 most efficiently stimulates in vitro platelet production when CXCR4 is included into membrane lipid rafts on Megs. At the molecular level, depletion of cholesterol from Megs membranes i) perturbed the responsiveness of megakaryocytic progenitors to an SDF-1 gradient, ii) inhibited SDF-1-mediated calcium flux and MAPKp42/44, AKT and STAT 1–6 phosphorylation in normal human Megs and (iii) inhibited F-actin polymerization, MMP-9 and VEGF secretion, and adhesion to endothelium and fibrinogen. More importantly we found that ex vivo-expanded human Megs, produced significantly fewer platelets during their transendothelial migration after preincubation with cholesterol-lowering MbCD. To evaluate whether cholesterol depletion from Megs affects platelet production we exposed C57Bl6 mice to statins (orally, 21 days, 750 mg/mouse) and observed that statins did not influence peripheral blood cell counts. However, when mice were acutely bled this treatment led to a significant amelioration of post-bleeding thrombocytosis as compared to untreated (control) mice. At the same time, recovery of erythrocyte and leukocyte counts was unaffected. Thus we demonstrated for the first time that statins affect CXCR4-mediated thrombopoiesis by perturbing lipid raft formation and should be considered as potential drugs to prevent post-trauma or post-operative thrombocytosis.


2015 ◽  
Vol 309 (7) ◽  
pp. H1178-H1185 ◽  
Author(s):  
Kimiko Yamamoto ◽  
Joji Ando

Vascular endothelial cells (ECs) respond to the hemodynamic forces stretch and shear stress by altering their morphology, functions, and gene expression. However, how they sense and differentiate between these two forces has remained unknown. Here we report that the plasma membrane itself differentiates between stretch and shear stress by undergoing transitions in its lipid phases. Uniaxial stretching and hypotonic swelling increased the lipid order of human pulmonary artery EC plasma membranes, thereby causing a transition from the liquid-disordered phase to the liquid-ordered phase in some areas, along with a decrease in membrane fluidity. In contrast, shear stress decreased the membrane lipid order and increased membrane fluidity. A similar increase in lipid order occurred when the artificial lipid bilayer membranes of giant unilamellar vesicles were stretched by hypotonic swelling, indicating that this is a physical phenomenon. The cholesterol content of EC plasma membranes significantly increased in response to stretch but clearly decreased in response to shear stress. Blocking these changes in the membrane lipid order by depleting membrane cholesterol with methyl-β-cyclodextrin or by adding cholesterol resulted in a marked inhibition of the EC response specific to stretch and shear stress, i.e., phosphorylation of PDGF receptors and phosphorylation of VEGF receptors, respectively. These findings indicate that EC plasma membranes differently respond to stretch and shear stress by changing their lipid order, fluidity, and cholesterol content in opposite directions and that these changes in membrane physical properties are involved in the mechanotransduction that activates membrane receptors specific to each force.


2019 ◽  
Vol 20 (16) ◽  
pp. 3904 ◽  
Author(s):  
Edismauro Garcia Freitas Filho ◽  
Luiz Augusto Marin Jaca ◽  
Lilian Cristiane Baeza ◽  
Célia Maria de Almeida Soares ◽  
Clayton Luiz Borges ◽  
...  

Lipid rafts are highly ordered membrane microdomains enriched in cholesterol, glycosphingolipids, and certain proteins. They are involved in the regulation of cellular processes in diverse cell types, including mast cells (MCs). The MC lipid raft protein composition was assessed using qualitative mass spectrometric characterization of the proteome from detergent-resistant membrane fractions from RBL-2H3 MCs. Using two different post-isolation treatment methods, a total of 949 lipid raft associated proteins were identified. The majority of these MC lipid raft proteins had already been described in the RaftProtV2 database and are among highest cited/experimentally validated lipid raft proteins. Additionally, more than half of the identified proteins had lipid modifications and/or transmembrane domains. Classification of identified proteins into functional categories showed that the proteins were associated with cellular membrane compartments, and with some biological and molecular functions, such as regulation, localization, binding, catalytic activity, and response to stimulus. Furthermore, functional enrichment analysis demonstrated an intimate involvement of identified proteins with various aspects of MC biological processes, especially those related to regulated secretion, organization/stabilization of macromolecules complexes, and signal transduction. This study represents the first comprehensive proteomic profile of MC lipid rafts and provides additional information to elucidate immunoregulatory functions coordinated by raft proteins in MCs.


Sign in / Sign up

Export Citation Format

Share Document