inhibitory antibody
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 40)

H-INDEX

38
(FIVE YEARS 4)

2021 ◽  
Vol 1 (3) ◽  
pp. 164-177
Author(s):  
Fabienne Tschanz ◽  
Sabine Bender ◽  
Irma Telarovic ◽  
Verena Waller ◽  
Roberto F. Speck ◽  
...  

The cellular response to ionizing radiation (IR) depends on tumor cell and microenvironmental factors. Here, we investigated the role of IR-induced ADAM17 matrix metalloproteinase activity for the intercellular communication between tumor cells and the tumor vasculature in non–small cell lung cancer (NSCLC) tumor models. Factors shed by ADAM17 from NSCLC tumor cells (A549, H358) and relevant for endothelial cell migration were investigated using transwell migration assays, ELISA, and flow cytometry. Tumor angiogenesis–related endpoints were analyzed with the chorio-allantoic membrane assay and in murine NSCLC tumor models. Efficacy-oriented experiments were performed in a murine orthotopic NSCLC tumor model using irradiation with an image-guided small-animal radiotherapy platform alone and in combination with the novel ADAM17-directed antibody MEDI3622. In vitro, VEGF was identified as the major factor responsible for IR-induced and ADAM17-dependent endothelial cell migration toward attracting tumor cells. IR strongly enhanced tumor cell–associated ADAM17 activity, released VEGF in an ADAM17-dependent manner, and thereby coordinated the communication between tumor and endothelial cells. In vivo, tumor growth and microvessel size and density were strongly decreased in response to the combined treatment modality of IR and MEDI3622 but not by either treatment modality alone and thus suggest that the supra-additive effect of the combined treatment modality is in part due to abrogation of the ADAM17-mediated IR-induced protective effect on the tumor vasculature. Furthermore, we demonstrate that the novel ADAM17-inhibitory antibody MEDI3622 potently improves the radiotherapy response of NSCLC. Significance: The tumor response to radiotherapy is influenced by several factors of the tumor microenvironment. We demonstrate that inhibition of the sheddase ADAM17 by the novel antibody MEDI3622 reduces IR-induced VEGF release from tumor cells relevant for endothelial cell migration and vasculature protection, thereby enhancing radiotherapy treatment outcome of NSCLC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei-Ching Liang ◽  
Jianping Yin ◽  
Patrick Lupardus ◽  
Jianhuan Zhang ◽  
Kelly M. Loyet ◽  
...  

AbstractAntibody function is typically entirely dictated by the Complementarity Determining Regions (CDRs) that directly bind to the antigen, while the framework region acts as a scaffold for the CDRs and maintains overall structure of the variable domain. We recently reported that the rabbit monoclonal antibody 4A11 (rbt4A11) disrupts signaling through both TGFβ2 and TGFβ3 (Sun et al. in Sci Transl Med, 2021. https://doi.org/10.1126/scitranslmed.abe0407). Here, we report a dramatic, unexpected discovery during the humanization of rbt4A11 where, two variants of humanized 4A11 (h4A11), v2 and v7 had identical CDRs, maintained high affinity binding to TGFβ2/3, yet exhibited distinct differences in activity. While h4A11.v7 completely inhibited TGFβ2/3 signaling like rbt4A11, h4A11.v2 did not. We solved crystal structures of TGFβ2 complexed with Fab fragments of h4A11.v2 or h4A11.v7 and identified a novel interaction between the two heavy chain molecules in the 2:2 TGFb2:h4A11.v2-Fab complex. Further characterization revealed that framework residue variations at either position 19, 79 or 81 (Kabat numbering) of the heavy chain strikingly converts h4A11.v2 into an inhibitory antibody. Our work suggests that in addition to CDRs, framework residues and interactions between Fabs in an antibody could be engineered to further modulate activity of antibodies.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2001-2001
Author(s):  
Jeffrey Teigler ◽  
Julian Low ◽  
Shawn Rose ◽  
Ellen Cahir-Mcfarland ◽  
Ted Yednock ◽  
...  

Abstract Introduction: Autoimmune Hemolytic Anemia (AIHA) is caused by autoantibodies that react with red blood cells (RBCs) resulting in predominantly extravascular hemolysis in an FcR and/or complement-dependent manner. In warm AIHA (wAIHA), autoantibodies are generally of the IgG isotype, while in cold agglutinin disease (CAD) they are predominantly of the IgM isotype. It is well established that the classical complement cascade is critical for the pathogenesis of CAD based on therapeutic clinical studies. Published data also suggest that complement activation plays a role in wAIHA, although it is not clear which patients would most benefit from complement-based therapy. To help address this question, we utilized an assay that measures the ability of autoantibodies in patient sera to induce complement deposition on the surface of donor RBCs (based on Meulenbroek, et al., 2015). Methods: Sera were collected retrospectively from 12 wAIHA patients whose direct antiglobulin tests (DAT) were either IgG+/C3+ or IgG+/C3-. Sera retrospectively collected from two CAD patients were used as positive controls. Individual patient sera were examined in the in vitro complement deposition assay using RBCs from type O+ healthy donors. RBCs and sera were incubated at 37 oC in the presence of either EDTA or an inhibitory antibody against C1q as inhibitors of the classical pathway. RBCs were then stained and processed by flow cytometry to determine the level of C4 deposition. Results: Sera from both CAD patients deposited C4 on the surface of ~70% of healthy human RBCs in vitro. Four out of twelve (33%) sera from wAIHA patients displayed this activity, and all four of these patients were identified as IgG+/C3+ on DAT. Complement deposition ranged from ~10-60% of the RBCs in wAIHA, suggesting heterogeneity in antibody activity for complement deposition in sera from wAIHA patients. Addition of EDTA or an inhibitory antibody against C1q fully blocked deposition of C4 on RBCs by wAIHA sera, indicating dependence of the classical complement pathway. These results indicate differences in the frequency of classical pathway involvement in CAD versus wAIHA and may help identify a subset of wAIHA patients most likely to respond to anti-C1q therapy. Conclusions: The hypothesis of classical complement cascade involvement in wAIHA disease in a subset of patients is supported by our results. Critically, complement deposition on the surface of cells by anti-C1q prevented the deposition of a downstream complement marker, C4. Inhibition of C1q has been shown to block activation of all downstream classical complement components, including C3b and C4b involved in extravascular hemolysis and C5b involved in direct cell lysis. The therapeutic potential of blocking classical complement pathway activity in wAIHA is currently being evaluated in an ongoing Phase 2 interventional trial (NCT04691570) assessing efficacy of an anti-C1q drug candidate in wAIHA patients, focusing on those with evidence of classical complement pathway activity. Disclosures Teigler: Annexon Inc: Current Employment, Current equity holder in publicly-traded company. Low: Annexon Inc: Current Employment, Current equity holder in publicly-traded company. Rose: Annexon Inc: Current Employment, Current equity holder in publicly-traded company. Cahir-Mcfarland: Annexon Inc: Current Employment, Current equity holder in publicly-traded company. Yednock: Annexon Inc: Current Employment, Current equity holder in publicly-traded company. Kroon: Annexon Inc: Current Employment, Current equity holder in publicly-traded company. Keswani: Annexon Inc: Current Employment, Current equity holder in publicly-traded company. Barcellini: Novartis: Honoraria; Bioverativ: Membership on an entity's Board of Directors or advisory committees; Agios: Honoraria, Research Funding; Alexion Pharmaceuticals: Honoraria; Incyte: Membership on an entity's Board of Directors or advisory committees.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A295-A295
Author(s):  
Hongtao Lu ◽  
Dawei Sun ◽  
Xiaofeng Niu ◽  
Yanan Geng ◽  
Jing Wang ◽  
...  

BackgroundAnti-CD3-based bispecific T cell engagers (BiTE) showed limited clinical efficacy in solid tumors. This is partly due to the difficulty and scarcity of T cells infiltrating into tumor microenvironment (TME). Macrophages are major component of immune cell infiltrate in the TME and can constitute up to 50% of a solid tumor mass. Signal regulatory protein-α (SIRPα) is a major myeloid cell inhibitory receptor that engages the ”don’t eat me” signal from CD47 expressed on tumors. Similar to BITE where T cells are activated by the CD3 antibody, we constructed a novel bispecific macrophage engager (BiME) where macrophage is activated by a SIRPα inhibitory antibody that is directed to a particular tumor via the tumor associated antigen (TAA) antibody, resulting in phagocytosis of the tumor. Previously, we have developed a human SIRPα monoclonal antibody called ES004-B4, that blocks CD47 binding. ES004 greatly augments antibody dependent cellular phagocytosis killing of cancer cell lines. We utilize ES004 to make a BiME called ES028 where the SIRPα antibody is linked to a Claudin18.2 antibody, targeting claudin18.2-expressing cancers like gastric cancer.MethodsThrough Elpiscience BiME platform, we have generated a panel of anti-Claudin18.2/SIRPα bispecific antibodies, including different anti-Claudin18.2 arm and anti-SIRPα arm positions, ratios and IgG isotypes. The binding and blocking ability of these bispecific antibodies were evaluated by ELISA and FACS. In vitro function activity was determined by phagocytosis assay using human monocyte derived macrophage and mouse bone marrow derived macrophage. In vivo anti-tumor efficacy was investigated in a syngeneic tumor model with hSIRPα knock-in mice.ResultsWe demonstrate that an anti-Claudin18.2/SIRPα bispecific antibody ES028 exhibited super anti-cancer effects, with improved phagocytosis of cancer in vitro and extended survival of claudin18.2-expressing tumor burden mice. In the syngeneic model, ES028 showed almost 100% tumor growth inhibition in the SIRPα knock-in models without causing cytokine storm. ES028 could not induce phagocytosis of Claudin18.2 negative cells, proving its specificity and selectivity.ConclusionsWe have developed a bispecific macrophage engager (BiME) platform that is capable of activating phagocytosis to kill cancer cells. A number of preclinical programs are ongoing to design specific BiME for particular tumor indication. Our SIRPα-based macrophage engager ES028 is the first to have reached the pre-clinical stage with a demonstrated favorable safety profile and promising therapeutic efficacy. Taken together, these results indicate that the bi-specific macrophage engager platform is feasible and could be a powerful weapon in the battle towards the elimination of cancers.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jéssica R. S. Alves ◽  
Fernanda F. de Araújo ◽  
Camilla V. Pires ◽  
Andréa Teixeira-Carvalho ◽  
Barbara A. S. Lima ◽  
...  

Malaria remains a major public health problem worldwide, and Plasmodium vivax is the most widely distributed malaria parasite. Naturally acquired binding inhibitory antibodies (BIAbs) to region II of the Duffy binding protein (DBPII), a P. vivax ligand that is critical for reticulocyte invasion, are associated with a reduced risk of clinical malaria. Owing to methodological issues in evaluating antibodies that inhibit the DBPII–DARC interaction, a limited number of studies have investigated DBPII BIAbs in P. vivax-exposed populations. Based on the assumption that individuals with a consistent BIAb response are characterized by strain-transcending immune responses, we hypothesized that detecting broadly reactive DBPII antibodies would indicate the presence of BIAb response. By taking advantage of an engineered DBPII immunogen targeting conserved DBPII neutralizing epitopes (DEKnull-2), we standardized a multiplex flow cytometry-based serological assay to detect broadly neutralizing IgG antibodies. For this study, a standard in vitro cytoadherence assay with COS-7 cells expressing DBPII was used to test for DBPII BIAb response in long-term P. vivax-exposed Amazonian individuals. Taken together, the results demonstrate that this DBPII-based multiplex assay facilitates identifying DBPII BIAb carriers. Of relevance, the ability of the multiplex assay to identify BIAb responders was highly accurate when the positivity for all antigens was considered. In conclusion, the standardized DBPII-based flow cytometric assay confirmed that DBPII-BIAb activity was associated with the breadth rather than the magnitude of anti-DBPII antibodies. Altogether, our results suggest that multiplex detection of broadly DBPII-reactive antibodies facilitates preliminary screening of BIAb responders.


2021 ◽  
Author(s):  
Wei-Ching Liang ◽  
Jianping Yin ◽  
Patrick Lupardus ◽  
Jianhuan Zhang ◽  
Kelly M. Loyet ◽  
...  

Abstract Antibody function is typically entirely dictated by the Complementarity Determining Regions (CDRs) that directly bind to the antigen, while the framework region acts as a scaffold for the CDRs and maintains overall structure of the variable domain. We recently reported that the rabbit monoclonal antibody 4A11 (rbt4A11) disrupts signaling through both TGFβ2 and TGFβ31. Here, we report a dramatic, unexpected discovery during the humanization of rbt4A11 where, two variants of humanized 4A11 (h4A11), v2 and v7 had identical CDRs, maintained high affinity binding to TGFβ2/3, yet exhibited distinct differences in activity. While h4A11.v7 completely inhibited TGFβ2/3 signaling like rbt4A11, h4A11.v2 did not. We solved crystal structures of TGFβ2 complexed with Fab fragments of h4A11.v2 or h4A11.v7 and identified a novel interaction between the two heavy chain molecules in the 2:2 TGFb2:h4A11.v2-Fab complex. Further characterization revealed that framework residue variations at either position 19, 79 or 81 of the heavy chain strikingly converts h4A11.v2 into an inhibitory antibody. Our work suggests that in addition to CDRs, framework residues and interactions between Fabs in an antibody could be engineered to further modulate activity of antibodies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Youssif M. Ali ◽  
Matteo Ferrari ◽  
Nicholas J. Lynch ◽  
Sadam Yaseen ◽  
Thomas Dudler ◽  
...  

Early and persistent activation of complement is considered to play a key role in the pathogenesis of COVID-19. Complement activation products orchestrate a proinflammatory environment that might be critical for the induction and maintenance of a severe inflammatory response to SARS-CoV-2 by recruiting cells of the cellular immune system to the sites of infection and shifting their state of activation towards an inflammatory phenotype. It precedes pathophysiological milestone events like the cytokine storm, progressive endothelial injury triggering microangiopathy, and further complement activation, and causes an acute respiratory distress syndrome (ARDS). To date, the application of antiviral drugs and corticosteroids have shown efficacy in the early stages of SARS-CoV-2 infection, but failed to ameliorate disease severity in patients who progressed to severe COVID-19 pathology. This report demonstrates that lectin pathway (LP) recognition molecules of the complement system, such as MBL, FCN-2 and CL-11, bind to SARS-CoV-2 S- and N-proteins, with subsequent activation of LP-mediated C3b and C4b deposition. In addition, our results confirm and underline that the N-protein of SARS-CoV-2 binds directly to the LP- effector enzyme MASP-2 and activates complement. Inhibition of the LP using an inhibitory monoclonal antibody against MASP-2 effectively blocks LP-mediated complement activation. FACS analyses using transfected HEK-293 cells expressing SARS-CoV-2 S protein confirm a robust LP-dependent C3b deposition on the cell surface which is inhibited by the MASP-2 inhibitory antibody. In light of our present results, and the encouraging performance of our clinical candidate MASP-2 inhibitor Narsoplimab in recently published clinical trials, we suggest that the targeting of MASP-2 provides an unsurpassed window of therapeutic efficacy for the treatment of severe COVID-19.


2021 ◽  
Vol 5 (5) ◽  
Author(s):  
Simon Sjuls ◽  
Ulf Jensen ◽  
Karin Littmann ◽  
Annette Bruchfeld ◽  
Jonas Brinck

Abstract Background Nephrotic syndrome causes severe hypercholesterolaemia due to increased production and altered clearance of lipoproteins from the liver. It is challenging for patients with nephrotic syndrome and coronary heart disease to meet LDL-cholesterol (LDL-C) goals for secondary prevention with conventional lipid-lowering therapy. Case summary We present a man with nephrotic syndrome caused by focal segmental glomerular sclerosis (FSGS) and hypercholesterolaemia. He presented at the emergency room (ER) with an ST-elevation myocardial infarction at the age of 26. On follow-up, the patient had persistent hypercholesterolaemia [LDL-C 3.9 mmol/L and lipoprotein(a) 308 nmol/L] despite a combination of lipid-lowering therapy with atorvastatin 80 mg/day and ezetimibe 10 mg/day. Addition of the proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitory antibody evolocumab 140 mg bi-monthly did not improve cholesterol levels. However, after addition of the sodium-glucose cotransporter 2 (SGLT2) inhibitor empagliflozin 10 mg/day on top of other anti-proteinuric treatments, the patient’s proteinuria was reduced and a dramatic drop in LDL-C level by 3.2–0.6 mmol/L (−81%) was observed when evolocumab was re-introduced. Discussion We show that target LDL-C levels were obtained in this patient with therapy-resistant FSGS and hypercholesterolaemia following multi-pharmacological treatment with SGLT2 and PCSK9 inhibitors on top of conventional lipid-lowering therapy. The SGLT2-inhibitor reduced proteinuria and, speculatively, also reduced urinary loss of PCSK9-antibody. Therefore, in patients with nephrotic syndrome and cardiovascular disease novel therapeutic options to manage proteinuria could be considered to improve the efficacy of the lipid-lowering therapy, especially when the protein-based PCSK9 inhibitors are used.


2021 ◽  
Author(s):  
Xianmiao Ye ◽  
Xinglong Liu ◽  
Tao Shu ◽  
Weiqi Deng ◽  
Min Liao ◽  
...  

Zika virus (ZIKV) infection during pregnancy has been linked to congenital abnormalities such as microcephaly in infants. An efficacious vaccine is still desirable for preventing the potential recurrence of ZIKV epidemic. Here, we report the generation of an attenuated ZIKV (rGZ02a) that has sharply decreased virulence in mice but grows to high titers in Vero cells, a widely approved cell line for manufacturing human vaccines. Compared to the wild-type ZIKV (GZ02) and a plasmid-launched rGZ02p, rGZ02a has 3 unique amino acid alterations in the envelope (E, S304F), non-structural protein 1 (NS1, R103K), and NS5 (W637R). rGZ02a is more sensitive to type I interferon than GZ02 and rGZ02p, and causes no severe neurological disorders in either wild-type neonatal C57BL/6 mice or type I interferon receptor knock-out (Ifnar1-/-) C57BL/6 mice. Immunization with rGZ02a elicits robust inhibitory antibody responses with a certain long-term durability. Neonates born to the immunized dams are effectively protected against ZIKV-caused neurological disorders and brain damage. rGZ02a as a booster vaccine greatly improves the protective immunity primed by Ad2-prME, an adenovirus vectored vaccine expressing ZIKV prM and E proteins. Our results illustrate that rGZ02a-induced maternal immunity can be transferred to the neonates and confer effective protection. Hence, rGZ02a may be developed as an alternative live-attenuated vaccine and warrants a further evaluation. IMPORTANCE Zika virus (ZIKV), a mosquito-borne flavivirus that has caused global outbreaks since 2013, is associated with severe neurological disorders such as Guillian-Barré syndrome in adults and microcephaly in infants. The ZIKV epidemic has gradually subsided, but a safe and effective vaccine is still desirable to prevent its potential recurrence, especially in endemic countries with competent mosquito vectors. Here, we describe a novel live-attenuated ZIKV, rGZ02a, that carries 3 unique amino acid alterations compared to the wild-type GZ02 and a plasmid-launched rGZ02p. The growth capacity of rGZ02a is comparable to GZ02 in Vero cells, but the pathogenicity is significantly attenuated in two mice models. Immunization with rGZ02a elicits robust inhibitory antibody responses in the dams and effectively protects their offspring against ZIKV disease. Importantly, in a heterologous prime-boost regimen, rGZ02a effectively boosts the protective immunity primed by an adenovirus vectored vaccine. Thus, rGZ02a is a promising candidate for live-attenuated ZIKV vaccine.


2021 ◽  
Vol 17 (4) ◽  
pp. e1009171
Author(s):  
Jin Gao ◽  
Hongquan Wan ◽  
Xing Li ◽  
Mira Rakic Martinez ◽  
Laura Klenow ◽  
...  

Virions are a common antigen source for many viral vaccines. One limitation to using virions is that the antigen abundance is determined by the content of each protein in the virus. This caveat especially applies to viral-based influenza vaccines where the low abundance of the neuraminidase (NA) surface antigen remains a bottleneck for improving the NA antibody response. Our systematic analysis using recent H1N1 vaccine antigens demonstrates that the NA to hemagglutinin (HA) ratio in virions can be improved by exchanging the viral backbone internal genes, especially the segment encoding the polymerase PB1 subunit. The purified inactivated virions with higher NA content show a more spherical morphology, a shift in the balance between the HA receptor binding and NA receptor release functions, and induce a better NA inhibitory antibody response in mice. These results indicate that influenza viruses support a range of ratios for a given NA and HA pair which can be used to produce viral-based influenza vaccines with higher NA content that can elicit more balanced neutralizing antibody responses to NA and HA.


Sign in / Sign up

Export Citation Format

Share Document