scholarly journals Unusual self revealing nuclear segmentation in a neutrophil from primary bone marrow cells in Mus musculus

2014 ◽  
Vol 24 (2) ◽  
pp. 477-477
Author(s):  
Anthony Swain ◽  
D. Rhodri E. Jones
1976 ◽  
Vol 62 (5) ◽  
pp. 657 ◽  
Author(s):  
Clarence A. Speer ◽  
Paul H. Silverman ◽  
Steven G. Schiewe

2003 ◽  
Vol 197 (8) ◽  
pp. 1029-1035 ◽  
Author(s):  
Reimi Kawaida ◽  
Toshiaki Ohtsuka ◽  
Junichi Okutsu ◽  
Tohru Takahashi ◽  
Yuho Kadono ◽  
...  

Osteoclasts are multinucleated cells that resorb bones, and are derived from hematopoietic cells of the monocyte/macrophage lineage. The receptor activator of NF-κB ligand (RANKL, also called ODF/TRANCE/OPGL) stimulates both osteoclast differentiation from osteoclast progenitors and activation of mature osteoclasts. To identify genes responsible for osteoclast differentiation, we used a molecular indexing technique. Here, we report a clone of one of these genes whose transcription is induced by soluble RANKL (sRANKL) in both the RAW264.7 cells of the mouse macrophage cell line and the mouse primary bone marrow cells. The predicted protein was found to be a mouse homologue of Jun dimerization protein 2 (JDP2), a member of the AP-1 family of transcription factors, containing a basic region-leucine zipper motif. Transient transfection experiments revealed that overexpression of JDP2 leads to activation of both tartrate-resistant acid phosphatase (TRAP) and cathepsin K gene promoters in RAW264.7 cells. Infection of mouse primary bone marrow cells with retroviruses expressing JDP2-facilitated sRANKL-mediated formation of TRAP-positive multinuclear osteoclasts. Importantly, antisense oligonucleotide to JDP2 strongly suppressed sRANKL-induced osteoclast formation of RAW264.7 cells. Our findings suggest that JDP2 may play an important role in the RANK-mediated signal transduction system, especially in osteoclast differentiation.


Gene ◽  
2005 ◽  
Vol 352 ◽  
pp. 1-9 ◽  
Author(s):  
Balaji Ramanathan ◽  
J. Ernest Minton ◽  
Chris R. Ross ◽  
Frank Blecha

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4916-4916
Author(s):  
Wan Xing Hong ◽  
Steven Chen ◽  
Jon Akutagawa ◽  
Michelle Arkin ◽  
Benjamin S. Braun

Abstract Abstract 4916 Background: Aberrant signal transduction plays a central role in the pathogenesis of MDS/MPN, as indicated by the high prevalence of mutations that activate Ras signaling. Yet despite the central role of Ras signaling in the pathogenesis of JMML, at this time there are no signal transduction inhibitors with established efficacy in JMML. A screen of inhibitors has the potential to reveal potential therapeutic strategies and inform efforts to treat other neoplasms driven by hyperactive Ras signaling, both in the hematopoietic system and elsewhere. Aim: To investigate novel therapeutic options for JMML by utilizing a novel, reproducible system for rapid screening in primary cells. Innovations include using flow cytometry to isolate a highly clonogenic, disease-relevant “PreGM” population of primary bone marrow cells that recapitulate the abnormal growth pattern characteristic of JMML and unsorted bone marrow, the use of a genetically engineered mouse model, and the development of automated microscopy protocols. Method: Unfractionated bone marrow cells harvested from Mx1-Cre, KrasD12 and wildtype mice were utilized in the screens. PreGM cells, identified as Lineage lo/- Sca1- c-kit+ CD34+ CD16/32- CD105- CD150-, were purified from harvested bone marrow using flow cytometry. The purified PreGM cells were sorted into 96 well plates containing various inhibitors at set concentrations ranging from 1X (5 μg/ml, approx. 10 μM for most compounds) to 10−7X (5×10−7 μg/ml). The freshly sorted PreGM cells were exposed to inhibitors for 3 days under standard culture conditions (at 37°C, 98% humidity and 5% CO2) in 80% IMDM, 20% FBS and saturating dose of 10ng/ml of GM-CSF. At the end of that period, cell growth was quantified using the IN Cell Analyzer 2000 (GE). A total of 94 different inhibitors were screened using this method. The screen included a negative control (DMSO) and cytotoxic positive controls (Cytarabine, Adriamycin and Gemcitabine). Compound families included cyotoxic agents, tyrosine kinase inhibitors, PI3K family inhibitors, mitotic kinase inhibitors, epigenetic modifiers, hedgehog signaling inhibitors, and others. The majority of compounds were either FDA approved drugs or agents used in recent clinical trials. Candidates were screened for preferential activity against Mx1-Cre, KrasD12 cells. Results: Primary bone marrow cells were harvested from a total of 28 mice, 18 wild type (WT) and 10 Mx1-Cre, KrasD12. PreGM growth was quantified and dose response curves constructed for WT and mutant cells. WT and mutant IC50s for each compound were calculated using the ‘drc’ package from the R Project for Statistical Computing. Out of 94 candidates tested in this screen, none were found to demonstrate preferential inhibitory activity against Mx1-Cre, KrasD12 cells. Neither were any of the drugs found to be comparatively toxic to WT cells or to have significantly higher IC50s in mutant PreGM cells in comparison to WT cells. Some compounds of interest included Vorinostat, an epigenetic inhibitor, which was found to have robust inhibitory activity against both mutant and WT cells. It has comparable IC50s in mutant and WT cells with a calculated IC50 of 0. 0480X (std. error: 0. 135) in Mx1-Cre, KrasD12 cells and 0. 0244X (std. error: 0. 0293) in WT cells. Conclusion: None of the 94 compounds used in the screen were found to preferentially inhibit mutant or WT cell growth, indicating that Kras mutant cells have similar drug sensitivities to normal cells over a broad range of mechanistic approaches. These findings suggest that it may be difficult to find “synthetic lethal” opportunities for drugs that are selectively toxic to primary cells driven by hyperactive Ras signaling. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 59 (11) ◽  
pp. 901-910 ◽  
Author(s):  
Xuan Liu ◽  
Jie Zhang ◽  
Shijia Tang ◽  
Jianfei Sun ◽  
Zhichao Lou ◽  
...  

CYTOLOGIA ◽  
2005 ◽  
Vol 70 (4) ◽  
pp. 381-384 ◽  
Author(s):  
Om Prakash Chaurasia ◽  
Alok Kumar ◽  
Moushmi Kumari

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5267-5267 ◽  
Author(s):  
Paula De Melo Campos ◽  
João Agostinho Machado-Neto ◽  
Adriana Silva Santos Duarte ◽  
Renata Scopim-Ribeiro ◽  
Flavia Fonseca de Carvalho Barra ◽  
...  

Abstract Background Mast cell diseases are myeloproliferative neoplasms characterized by an abnormal proliferation and accumulation of mast cells in different tissues. The clinical presentation of mastocytosis is heterogeneous, ranging from skin-limited disease to more aggressive variants that may be associated with multiorgan dysfunction/failure and shortened survival. In a relatively high proportion of cases, the clonal nature of the disease can be established on the basis of the demonstration of gain-of-function mutations involving the tyrosine kinase (TK) domain of KIT in skin lesions and BM cells and by the factor-independent proliferation and transforming abilities of these mutations. The tyrosine kinase inhibitor Imatinib is a treatment available for mastocytosis patients; however, some KIT mutations, specially KIT D816V, confer resistance to this drug. Aims To characterize the clinical phenotype and molecular mutations of 2 relatives with diagnosis of systemic mastocytosis (WHO 2008). We also aimed to test the in vitro sensitivity of primary bone marrow (BM) cells from both patients to tyrosine kinase inhibitors. Patients and methods Four individuals were included in the study; two patients (case 1 [mother], and case 2 [daughter]), and the parents of case 1. DNA samples were obtained from total BM cells, CD3+ BM cells and oral mucosa of patients, and from peripheral blood of all individuals. KIT (exons 1 to 21) was submitted for Sanger sequencing analysis. Primary bone marrow cells (5X104) from the 2 patients were cultured and treated with Imatinib (5uM), Dasatinib (80nM) and PKC 412 (100nM) or with vehicle only (control cells) and submitted for proliferation (MTT) and apoptosis assays (Annexin-V/PI) at days 4, 8 and 12 of culture. Results Case 1 was a 33 year-old woman with a chronic history of pruritic skin rash who was referred to our outpatient service for evaluation of massive splenomegaly (25 centimeters in length) and pancytopenia. She had neither comorbidities nor any familial history of hematological malignancies. The patient had no siblings and had only one daughter (case 2). At biopsy, she showed extensive skin and bone marrow infiltration by mast cells. During follow up, the patient presented with spontaneous splenic rupture and had to undergo splenectomy, which led to the resolution of pancytopenia. She was diagnosed with Aggressive Systemic Mastocytosis. Her daughter (case 2), a 17 year-old woman, was also evaluated for an insidious history of diffuse skin rash. Skin and bone marrow biopsies showed massive infiltration by atypical mast cells and a diagnosis of Indolent Systemic Mastocytosis was made. The rare KIT K509I mutation was found in all DNA samples obtained from both patients, but not from the parents of case 1. This suggests that the KIT K509I was a germ line mutation acquired de novo by patient 1 that was subsequently transmitted to her daughter (patient 2). In vitro treatment of primary bone marrow cells harboring the KIT K509I mutation from patients 1 and 2 resulted in variable clinical response rates according to the drug used and the treatment duration. Imatinib treatment resulted in a significant reduction in proliferation (days 4, 8 and 12 of culture) and an increase in apoptosis (days 8 and 12) in cases 1 and 2 (all p≤0.03). Although Dasatinib resulted in decreased proliferation in both patients at day 12 (all p≤0.008), a significantly higher apoptosis ratio was observed only for patient 1 at day 12 of culture (p=0.03). PKC412 had a negative effect over cell growth in patient 1 (days 4 and 8) and in patient 2 (day 4) (all p≤0.03); however, no effect in apoptosis ratio was seen. Conclusions We herein provide a report of a KIT K509I mutation in familial mastocytosis. This mutation has been previously described in the literature in one case of familial mastocytosis. Although rare, the screening for KIT K509I mutation should be considered in all cases of familial mastocytosis. Based on in vitro studies, mastocytosis patients harboring the KIT K509I mutation could benefit from treatment with Imatinib, Dasatinib and PKC 412. However, Imatinib may be more effective in inducing neoplastic mast cells apoptosis. Both patients described were started on Imatinib in June 2013. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document