scholarly journals <i>Letter to the Editor:</i> Geomagnetic storm effects at low latitudes

1999 ◽  
Vol 17 (3) ◽  
pp. 438-441 ◽  
Author(s):  
R. G. Rastogi

Abstract. The geomagnetic horizontal (H) field from the chain of nine observatories in India are used to study the storm-time and disturbance daily variations. The peak decrease in storm-time variation in H showed significant enhancements at the equatorial electrojet stations over and above the normally expected decrease due to the ring current effects corrected for geomagnetic latitudes. The disturbance daily variation of H at equatorial stations showed a large decrease around midday hours over and above the usual dawn-maximum and dusk-minimum seen at any mid-latitude stations around the world. These slow and persistent additional decreases of H of disturbance daily variation at equatorial latitudes could be the effect of a westward electric field due to the Disturbance Ionospheric dynamo coupled with abnormally large electrical conductivities in the E region over the equator.Key words. Ionosphere (electric fields and currents) · Magnetospheric physics (electric fields; storms and substorms)

2000 ◽  
Vol 18 (11) ◽  
pp. 1390-1398 ◽  
Author(s):  
G. Rostoker

Abstract. There has been some discussion in recent times regarding whether or not substorm expansive phase activity plays any role of importance in the formation of the stormtime ring current. I explore this question using the Kp index as a proxy for substorm expansive phase activity and the Dst index as a proxy for symmetric ring current strength. I find that increases in Dst are mildly related to the strength of substorm expansive phase activity during the development of the storm main phase. More surprisingly, I find that the strength of Dst during the storm recovery phase is positively correlated with the strength of substorm expansive phase activity. This result has an important bearing on the question of how much the Dst index reflects activity other than that of the stormtime symmetric ring current strength for which it is supposed to be a proxy.Key words: Ionosphere (electric fields and currents) - Magnetospheric physics (current systems; storms and substorms)


2002 ◽  
Vol 20 (12) ◽  
pp. 1977-1985 ◽  
Author(s):  
R. Sridharan ◽  
C. V. Devasia ◽  
N. Jyoti ◽  
Diwakar Tiwari ◽  
K. S. Viswanathan ◽  
...  

Abstract. The effects on the electrodynamics of the equatorial E- and F-regions of the ionosphere, due to the occurrence of the solar eclipse during sunset hours on 11 August 1999, were investigated in a unique observational campaign involving ground based ionosondes, VHF and HF radars from the equatorial location of Trivandrum (8.5° N; 77° E; dip lat. 0.5° N), India. The study revealed the nature of changes brought about by the eclipse in the evening time E- and F-regions in terms of (i) the sudden intensification of a weak blanketing ES-layer and the associated large enhancement of the VHF backscattered returns, (ii) significant increase in h' F immediately following the eclipse and (iii) distinctly different spatial and temporal structures in the spread-F irregularity drift velocities as observed by the HF radar. The significantly large enhancement of the backscattered returns from the E-region coincident with the onset of the eclipse is attributed to the generation of steep electron density gradients associated with the blanketing ES , possibly triggered by the eclipse phenomena. The increase in F-region base height immediately after the eclipse is explained as due to the reduction in the conductivity of the conjugate E-region in the path of totality connected to the F-region over the equator along the magnetic field lines, and this, with the peculiar local and regional conditions, seems to have reduced the E-region loading of the F-region dynamo, resulting in a larger post sunset F-region height (h' F) rise. These aspects of E-and F-region behaviour on the eclipse day are discussed in relation to those observed on the control day.Key words. Ionosphere (electric fields and currents; equatorial ionosphere; ionospheric irregularities)


2000 ◽  
Vol 18 (9) ◽  
pp. 1097-1107 ◽  
Author(s):  
E. Borälv ◽  
P. Eglitis ◽  
H. J. Opgenoorth ◽  
E. Donovan ◽  
G. Reeves ◽  
...  

Abstract. We have investigated the time delay between substorm onset and related reactions in the dawn and dusk ionospheric electrojets, clearly separated from the nightside located substorm current wedge by several hours in MLT. We looked for substorm onsets occurring over Greenland, where the onset was identified by a LANL satellite and DMI magnetometers located on Greenland. With this setup the MARIA magnetometer network was located at dusk, monitoring the eastward electrojet, and the IMAGE chain at dawn, for the westward jet. In the first few minutes following substorm onset, sudden enhancements of the electrojets were identified by looking for rapid changes in magnetograms. These results show that the speed of information transfer between the region of onset and the dawn and dusk ionosphere is very high. A number of events where the reaction seemed to preceed the onset were explained by either unfavorable instrument locations, preventing proper onset timing, or by the inner magnetosphere's reaction to the Earthward fast flows from the near-Earth neutral line model. Case studies with ionospheric coherent (SuperDARN) and incoherent (EISCAT) radars have been performed to see whether a convection-induced electric field or enhanced conductivity is the main agent for the reactions in the electrojets. The results indicate an imposed electric field enhancement.Key words: Ionosphere (auroral ionosphere; electric fields and currents) - Magnetospheric physics (storms and substorms)


2000 ◽  
Vol 18 (1) ◽  
pp. 99-110 ◽  
Author(s):  
J. A. Wild ◽  
T. K. Yeoman ◽  
P. Eglitis ◽  
H. J. Opgenoorth

Abstract. High time resolution data from the CUTLASS Finland radar during the interval 01:30-03:30 UT on 11 May, 1998, are employed to characterise the ionospheric electric field due to a series of omega bands extending ~5° in latitude at a resolution of 45 km in the meridional direction and 50 km in the azimuthal direction. E-region observations from the STARE Norway VHF radar operating at a resolution of 15 km over a comparable region are also incorporated. These data are combined with ground magnetometer observations from several stations. This allows the study of the ionospheric equivalent current signatures and height integrated ionospheric conductances associated with omega bands as they propagate through the field-of-view of the CUTLASS and STARE radars. The high-time resolution and multi-point nature of the observations leads to a refinement of the previous models of omega band structure. The omega bands observed during this interval have scale sizes ~500 km and an eastward propagation velocity ~0.75 km s-1. They occur in the morning sector (~05 MLT), simultaneously with the onset/intensification of a substorm to the west during the recovery phase of a previous substorm in the Scandinavian sector. A possible mechanism for omega band formation and their relationship to the substorm phase is discussed..Key words. Ionosphere (auroral ionosphere; electric fields and currents) · Magnetospheric physics (magnetosphere-ionosphere interactions)


2004 ◽  
Vol 22 (3) ◽  
pp. 901-910 ◽  
Author(s):  
T. Bösinger ◽  
G. C. Hussey ◽  
C. Haldoupis ◽  
K. Schlegel

Abstract. A model developed several years ago by Huuskonen et al. (1984) predicted that vertical transport of ions in the nocturnal auroral E-region ionosphere can shift the electron density profiles in altitude during times of sufficiently large electric fields. If the vertical plasma transport effect was to operate over a sufficiently long enough time, then the real height of the E-region electron maximum should be shifted some km upwards (downwards) in the eastward (westward) auroral electrojet, respectively, when the electric field is strong, exceeding, say, 50 mV/m. Motivated by these predictions and the lack of any experimental verification so far, we made use of the large database of the European Incoherent Scatter (EISCAT) radar to investigate if the anticipated vertical plasma transport is at work in the auroral E-region ionosphere and thus to test the Huuskonen et al. (1984) model. For this purpose a new type of EISCAT data display was developed which enabled us to order a large number of electron density height profiles, collected over 16 years of EISCAT operation, according to the electric field magnitude and direction as measured at the same time at the radar's magnetic field line in the F-region. Our analysis shows some signatures in tune with a vertical plasma transport in the auroral E-region of the type predicted by the Huuskonen et al. model. The evidence brought forward is, however, not unambiguous and requires more rigorous analysis. Key words. Ionosphere (auroral ionosphere; plasma convection; electric fields and currents)


2002 ◽  
Vol 20 (11) ◽  
pp. 1837-1842 ◽  
Author(s):  
B. M. Vyas ◽  
R. Pandey

Abstract. Ionospheric drifts measured at a low latitude station, Udaipur (Geomag. Lat. 14.5° N), in the night-time F-region and daytime E-region during solar flares have been studied. The night-time observations, which correspond to the F-region drifts, were carried out on five different nights. The daytime observation corresponding to the E-region drifts is only for one day. It is found that the apparent drift during the solar flare period is reduced considerably, in the daytime E-region as well as in the night-time F-region. The East-West and North-South components of the apparent drift speed are also similarly affected. For the daytime E-region drifts during a flare, increased ionization and subsequent reduction of reflection height is proposed to be the cause of reduced drift speeds. For the night-time F-region drifts, a reduced electric field at the F-region heights resulting from coupling of sunlit and dark hemispheres has been proposed to be the possible cause.Key words. Ionosphere (electric fields and currents; ionospheric disturbances)


Sign in / Sign up

Export Citation Format

Share Document