A New Methodology for Open Pit Slope Design in Karst-Prone Ground Conditions Based on Integrated Stochastic-Limit Equilibrium Analysis

2016 ◽  
Vol 49 (7) ◽  
pp. 2737-2752 ◽  
Author(s):  
Ke Zhang ◽  
Ping Cao ◽  
Guowei Ma ◽  
Wenchen Fan ◽  
Jingjing Meng ◽  
...  
1992 ◽  
Vol 29 (6) ◽  
pp. 971-988 ◽  
Author(s):  
Z. Chen ◽  
N. R. Morgenstern ◽  
D. H. Chan

The mechanism of progressive failure is well understood as one which involves nonuniform straining of a strain-weakening material. Traditional limit equilibrium analysis cannot be used alone to obtain a rational solution for progressive failure problems because the deformation of the structure must be taken into account in the analysis. The failure of the Carsington Dam during construction in 1984 has been attributed to progressive failure of the underlying yellow clay and the dam core materials. The dam was monitored extensively prior to failure, and an elaborate geotechnical investigation was undertaken after failure. The limit equilibrium analysis indicated that the factors of safety were over 1.4 using peak strength of intact clay material or 1.2 based on reduced strength accounting for preshearing of the yellow clay layer. Factors of safety were found to be less than unity if residual strengths were used. The actual factor of safety at failure was, of course, equal to one. By using the finite element analysis with strain-weakening models, the extent and degree of weakening along the potential slip surface were calculated. The calculated shear strength was then used in the limit equilibrium analysis, and the factor of safety was found to be 1.05, which is very close to the actual value of 1.0. More importantly, the mechanism of failure and the initiation and propagation of the shear zones were captured in the finite element analysis. It was also found that accounting explicitly for pore-water pressure effects using the effective stress approach in the finite element and limit equilibrium analyses provides more realistic simulations of the failure process of the structure than analyses based on total stresses. Key words : progressive failure, strain softening, finite element analysis, dams.


2019 ◽  
Vol 262 ◽  
pp. 04004
Author(s):  
Janusz Ukleja

The method developed for this study, established on the premises of the limit equilibrium flat analysis for a spatial solution, is a modification of the STAB-3D method, previously described by the author. It combines the analyses methods of 2D slices of flat cross–sections with the spatial analyses methodology rooted in a specific breakdown of a landslide sliding body into 3D elements assuming some simplifying solution. However, this method is solely applicable in case of a landslide failure with a stipulated slip surface and with a consistent decline of a determined slide direction. Such a method was developed in the article published earlier, which provided then its basic assumptions and the equilibrium formulations. The following publication thereof, presents overall suppositions for this method as well as its modification involving the resultant forces brought to the equilibrium with the generalized slide direction. Apart from that, a comparative analysis was carried out on the impact of this modification applicability of the obtained results with regard to the STAB-3D method. The algorithm was also presented concerning the modified method with its results being compared to a couple of selected methods LEM (limit equilibrium method). The undertaken analysis reveals that the modified MSTAB-3D method determines stability indicators that are very similar to its earlier version. Moreover, the results occur to be also approximating the values obtained in the course of other methods with regard to the flat cross-section analysis.


2011 ◽  
Vol 243-249 ◽  
pp. 4528-4534
Author(s):  
Yao Ru Liu ◽  
Bo Li ◽  
Kuang Dai Leng ◽  
Yue Qun Huang

Time history analysis is performed on geotechnical engineering structures under earthquake actions using 3D nonlinear FEM. The distribution of internal force on slide surfaces has been interpolated from the stress field of FEM with 3D Multi-grid Method. The safety factor with time history of sliding block can be obtained by limit equilibrium analysis and its dynamic stability can be evaluated. For blocks sliced by single slide surface and wedge-shaped double slide surfaces, general formulas of safety factor are given and their applicability have been analyzed. Analysis and evaluation of slide block aseismic stability are performed on high slope on the right bank of Dagangshan arch dam.


Sign in / Sign up

Export Citation Format

Share Document