Progressive failure of the Carsington Dam: a numerical study

1992 ◽  
Vol 29 (6) ◽  
pp. 971-988 ◽  
Author(s):  
Z. Chen ◽  
N. R. Morgenstern ◽  
D. H. Chan

The mechanism of progressive failure is well understood as one which involves nonuniform straining of a strain-weakening material. Traditional limit equilibrium analysis cannot be used alone to obtain a rational solution for progressive failure problems because the deformation of the structure must be taken into account in the analysis. The failure of the Carsington Dam during construction in 1984 has been attributed to progressive failure of the underlying yellow clay and the dam core materials. The dam was monitored extensively prior to failure, and an elaborate geotechnical investigation was undertaken after failure. The limit equilibrium analysis indicated that the factors of safety were over 1.4 using peak strength of intact clay material or 1.2 based on reduced strength accounting for preshearing of the yellow clay layer. Factors of safety were found to be less than unity if residual strengths were used. The actual factor of safety at failure was, of course, equal to one. By using the finite element analysis with strain-weakening models, the extent and degree of weakening along the potential slip surface were calculated. The calculated shear strength was then used in the limit equilibrium analysis, and the factor of safety was found to be 1.05, which is very close to the actual value of 1.0. More importantly, the mechanism of failure and the initiation and propagation of the shear zones were captured in the finite element analysis. It was also found that accounting explicitly for pore-water pressure effects using the effective stress approach in the finite element and limit equilibrium analyses provides more realistic simulations of the failure process of the structure than analyses based on total stresses. Key words : progressive failure, strain softening, finite element analysis, dams.

2013 ◽  
Vol 391 ◽  
pp. 168-171
Author(s):  
Shou Jun Wang ◽  
Li Bo Yang

When it comes to the design of a wave-frame,empirical design is always adopted domestic,which is relatively conservative on stiffness and intensity and prefer a bigger factor of safety,thus these bring many uncertainties to the wave-frame.In order to reduce the negative effect to the wave system,the analysis of the wave-frame based on ANSYS is executed to have a knowledge of the weakness and the deformation of various parts.On the permise of ensuring the stiffness and intensity,with the method of grouping and using different profile steel,the purpose is to reduce the mass snd the negative effect brought by mass,and achieve the goal of optimization.


2019 ◽  
Vol 36 (3) ◽  
pp. 305-313
Author(s):  
S. F. Hwang ◽  
H. L. Yu

ABSTRACTThree types of polymer including polyurethane, polyethylene, and polysulfone were used as filler inside composite tubes to evaluate their effects on the crashworthiness. The composite tube consisting of carbon fiber fabric and polyurethane was fabricated by resin transfer molding and subjected to impact loading. In addition, the finite element analysis with progressive failure and delamination was used to simulate the crushing behavior of the polymer-filled composite tube. From the comparison between experiment and simulation, the finite element analysis is reliable, could reasonably describe the crushing behavior of the polymer-filled tube, and has nice prediction on the crashworthiness performance. From both the experiment and simulation results, the polyethylene-filled composite tube has clearly higher specific absorbed energy than the hollow composite tube, and polyethylene could be considered as an effective filler. However, the other two types of polymer filler have no clear effect.


Author(s):  
W.D. Liam Finn

There are three levels of analysis for assessing the postliquefaction stability of embankments: limit equilibrium analysis using residual strength, Newmark sliding block analysis using residual strength, and finite element large strain displacement analysis. The first two types are well known and often used. In recent years, finite element analysis has been used increasingly for important projects involving life safety and large remediation costs. The application of finite element analysis is illustrated by two case histories—failure of a river protection dike in Japan, and the seismic safety evaluation and subsequent remediation of Sardis Dam in Mississippi. The latter example is particularly relevant to pile-supported abutments because the upstream slope of the dam was nailed to a stable foundation layer using prestressed concrete piles. The determination of the static and dynamic moments and shears in these piles would not have been possible without the finite element analysis. A crucial problem affecting the reliability of all methods of analysis is determining the appropriate value for the residual strength.


2014 ◽  
Vol 974 ◽  
pp. 293-297
Author(s):  
Xiao Ping Wang ◽  
Xiong Xia ◽  
Kun Hu ◽  
Jin Cai Feng

The progressive failure study of the slope is a challenging problem. There exist a lot of problems at present in this area, it’s necessary to do some summaries. This paper did some analysis and discussion from four aspects: limit equilibrium analysis of the slope progressive failure; test analysis of the slope progressive failure, numerical simulation of the slope progressive failure and limit equilibrium analysis on the basis of finite element, and provided some reference for slope progressive failure study.


Author(s):  
Bipul Chandra Mondal ◽  
Ashutosh Sutra Dhar

This paper presents a finite element investigation on the strength and deformation characteristics of corroded steel pipes with corrosion on the exterior and interior surfaces of the pipes considering different corrosion parameters such as circumferential extent (width) of corrosion, ratio of corrosion width to pipe diameter and the locations of corrosion. The finite element analysis was performed using a commercially available general purpose finite element program, ABAQUS/Explicit. The study reveals that localized bending develops on the pipe wall within the corroded zone that extent up to a certain distance (1 to 1.5 times the corrosion dimension) in the non-corroded area. The localized bending causes stress concentration in the vicinity of the corroded area that is not well captured in the current design standards (i.e. modified ASME B31G). As a result, the modified ASME B31G method overestimated the pipe capacity comparing to the capacity calculated based on the finite element analysis. A pipe designed using the modified ASME B31G method is expected to provide a factor of safety less than the design factor of safety. The effects of circumferential extent of corrosion appears to be less compared to the effects of longitudinal extent of corrosion. The exterior corrosion was found to be more detrimental in comparison with the interior corrosion.


The paper emphasizes on designing a high performance All-Terrain Vehicle (ATV). We started the designing of 3D model of vehicle using CATIA V5 software. With considering, the critical parameters such as overall weight, safety, high strength, and ergonomics, the roll cage of all-terrain vehicle is designed and then its static analysis is carried out. The Roll cage plays a major role which provides safety to the driver and also it is a main building block of ATV. In this research paper, the roll cage is designed by considering all the constraints provided by SAE (Society of Automotive Engineers). The finite element analysis was done using ANSYS 15.0. Various impacts that the roll cage can undergo are studied. From the optimum design with considering the factor of safety in the account, the roll cage was designed with superior weight to strength ratio. The results obtained after the analysis stated the designed to be safe and sound.


1985 ◽  
Vol 13 (3) ◽  
pp. 127-146 ◽  
Author(s):  
R. Prabhakaran

Abstract The finite element method, which is a numerical discretization technique for obtaining approximate solutions to complex physical problems, is accepted in many industries as the primary tool for structural analysis. Computer graphics is an essential ingredient of the finite element analysis process. The use of interactive graphics techniques for analysis of tires is discussed in this presentation. The features and capabilities of the program used for pre- and post-processing for finite element analysis at GenCorp are included.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Sign in / Sign up

Export Citation Format

Share Document