Anisotropic Behaviour of Opalinus Clay Through Consolidated and Drained Triaxial Testing in Saturated Conditions

2018 ◽  
Vol 51 (5) ◽  
pp. 1305-1319 ◽  
Author(s):  
Valentina Favero ◽  
Alessio Ferrari ◽  
Lyesse Laloui
2019 ◽  
Author(s):  
S.B. Giger ◽  
A. Minardi ◽  
A. Ferrari ◽  
L. Laloui ◽  
R.T. Ewy ◽  
...  

2018 ◽  
Vol 14 ◽  
pp. 16-28 ◽  
Author(s):  
Silvio B. Giger ◽  
Russell T. Ewy ◽  
Valentina Favero ◽  
Rudy Stankovic ◽  
Lukas M. Keller

Author(s):  
Eleonora Crisci ◽  
Alessio Ferrari ◽  
Silvio B. Giger ◽  
Lyesse Laloui

2021 ◽  
Vol 25 ◽  
pp. 100210
Author(s):  
Alberto Minardi ◽  
Silvio B. Giger ◽  
Russell T. Ewy ◽  
Rudy Stankovic ◽  
Jørn Stenebråten ◽  
...  

2017 ◽  
Vol 9 (3) ◽  
pp. 519-530 ◽  
Author(s):  
Katrin M. Wild ◽  
Marco Barla ◽  
Giovanni Turinetti ◽  
Florian Amann

Author(s):  
Jesús F. Águila ◽  
Vanessa Montoya ◽  
Javier Samper ◽  
Luis Montenegro ◽  
Georg Kosakowski ◽  
...  

AbstractSophisticated modeling of the migration of sorbing radionuclides in compacted claystones is needed for supporting the safety analysis of deep geological repositories for radioactive waste, which requires robust modeling tools/codes. Here, a benchmark related to a long term laboratory scale diffusion experiment of cesium, a moderately sorbing radionuclide, through Opalinus clay is presented. The benchmark was performed with the following codes: CORE2DV5, Flotran, COMSOL Multiphysics, OpenGeoSys-GEM, MCOTAC and PHREEQC v.3. The migration setup was solved with two different conceptual models, i) a single-species model by using a look-up table for a cesium sorption isotherm and ii) a multi-species diffusion model including a complex mechanistic cesium sorption model. The calculations were performed for three different cesium boundary concentrations (10−3, 10−5, 10−7 mol / L) to investigate the models/codes capabilities taking into account the nonlinear sorption behavior of cesium. Generally, good agreement for both single- and multi-species benchmark concepts could be achieved, however, some discrepancies have been identified, especially near the boundaries, where code specific spatial (and time) discretization had to be improved to achieve better agreement at the expense of longer computation times. In addition, the benchmark exercise yielded useful information on code performance, setup options, input and output data management, and post processing options. Finally, the comparison of single-species and multi-species model concepts showed that the single-species approach yielded generally earlier breakthrough, because this approach accounts neither for cation exchange of Cs+ with K+ and Na+, nor K+ and Na+ diffusion in the pore water.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1400
Author(s):  
Rhys Jones ◽  
Calvin Rans ◽  
Athanasios P. Iliopoulos ◽  
John G. Michopoulos ◽  
Nam Phan ◽  
...  

The United States Air Force (USAF) Guidelines for the Durability and Damage Tolerance (DADT) certification of Additive Manufactured (AM) parts states that the most difficult challenge for the certification of an AM part is to establish an accurate prediction of its DADT. How to address this challenge is the focus of the present paper. To this end this paper examines the variability in crack growth in tests on additively manufactured (AM) Ti-6Al-4V specimens built using selective layer melting (SLM). One series of tests analysed involves thirty single edge notch tension specimens with five build orientations and two different post heat treatments. The other test program analysed involved ASTM standard single edge notch specimens with three different build directions. The results of this study highlight the ability of the Hartman–Schijve crack growth equation to capture the variability and the anisotropic behaviour of crack growth in SLM Ti-6Al-4V. It is thus shown that, despite the large variability in crack growth, the intrinsic crack growth equation remains unchanged and that the variability and the anisotropic nature of crack growth in this test program is captured by allowing for changes in both the fatigue threshold and the cyclic fracture toughness.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 877
Author(s):  
Masoud Abbaszadeh ◽  
Volker Ventzke ◽  
Leonor Neto ◽  
Stefan Riekehr ◽  
Filomeno Martina ◽  
...  

Increasing demand for producing large-scale metal components via additive manufacturing requires relatively high building rate processes, such as wire + arc additive manufacturing (WAAM). For the industrial implementation of this technology, a throughout understanding of material behaviour is needed. In the present work, structures of Ti-6Al-4V, AA2319 and S355JR steel fabricated by means of WAAM were investigated and compared with respect to their mechanical and microstructural properties, in particular under compression loading. The microstructure of WAAM specimens is assessed by scanning electron microscopy, electron back-scatter diffraction, and optical microscopy. In Ti-6Al-4V, the results show that the presence of the basal and prismatic crystal planes in normal direction lead to an anisotropic behaviour under compression. Although AA2319 shows initially an isotropic plastic behaviour, the directional porosity distribution leads to an anisotropic behaviour at final stages of the compression tests before failure. In S355JR steel, isotropic mechanical behaviour is observed due to the presence of a relatively homogeneous microstructure. Microhardness is related to grain morphology variations, where higher hardness near the inter-layer grain boundaries for Ti-6Al-4V and AA2319 as well as within the refined regions in S355JR steel is observed. In summary, this study analyzes and compares the behaviour of three different materials fabricated by WAAM under compression loading, an important loading condition in mechanical post-processing techniques of WAAM structures, such as rolling. In this regard, the data can also be utilized for future modelling activities in this direction.


Sign in / Sign up

Export Citation Format

Share Document