On an Extremal Problem About the Arc-Length of Algebraic Polynomials

2005 ◽  
Vol 147 (2) ◽  
pp. 165-171 ◽  
Author(s):  
Petar Petrov
2013 ◽  
Vol 67 (2) ◽  
pp. 167-173
Author(s):  
Milan A. Kovačević ◽  
Igor Ž. Milovanović

2019 ◽  
Vol 27 (1) ◽  
pp. 28
Author(s):  
K.A. Danchenko ◽  
V.A. Kofanov

We consider the Bojanov-Naidenov problem over the set $\sigma_{h,r}$ of all non-periodic splines $s$ of order $r$ and minimal defect with knots at the points $kh$, $k \in \mathbb{Z}$. More exactly, for given $n, r \in \mathbb{N}$; $p, A > 0$ and any fixed interval $[a, b] \subset \mathbb{R}$ we solve the following extremal problem $\int\limits_a^b |x(t)|^q dt \rightarrow \sup$, $q \geqslant p$, over the classes $\sigma_{h,r}^p(A) := \bigl\{ s(\cdot + \tau) \colon s \in \sigma_{h,r}, \| s \|_{p, \delta} \leqslant A \| \varphi_{\lambda, r} \|_{p, \delta}, \delta \in (0, h], \tau \in \mathbb{R} \bigr\}$, where $\| x \|_{p, \delta} := \sup \bigl\{ \| x \|_{L_p[a,b]} \colon a, b \in \mathbb{R}, 0 < b - a \leqslant \delta \bigr\}$, and $\varphi_{\lambda, r}$ is $(2\pi / \lambda)$-periodic spline of Euler of order $r$. In particularly, for $k = 1, ..., r - 1$ we solve the extremal problem $\int\limits_a^b |x^{(k)}(t)|^q dt \rightarrow \sup$, $q \geqslant 1$, over the classes $\sigma_{h,r}^p (A)$. Note that the problems (1) and (2) were solved earlier on the classes $\sigma_{h,r}(A, p) := \bigl\{ s(\cdot + \tau) \colon s \in \sigma_{h,r}, L(s)_p \leqslant AL(\varphi_{n,r})_p, \tau \in \mathbb{R} \bigr\}$, where $L(x)_p := \sup \bigl\{ \| x \|_{L_p[a, b]} \colon a, b \in \mathbb{R}, |x(t)| > 0, t \in (a, b) \bigr\}$. We prove that the classes $\sigma_{h,r}^p (A)$ are wider than the classes $\sigma_{h,r}(A,p)$. Similarly we solve the analog of Erdös problem about the characterisation of the spline $s \in \sigma_{h,r}^p(A)$ that has maximal arc length over fixed interval $[a, b] \subset \mathbb{R}$.


1997 ◽  
Vol 62 (3) ◽  
pp. 278-287 ◽  
Author(s):  
V. V. Arestov ◽  
V. Yu. Raevskaya

1997 ◽  
Author(s):  
J. Farley Norman ◽  
Joseph S. Lappin ◽  
Hideko F. Norman

2020 ◽  
pp. 26-32
Author(s):  
M. I. Kalinin ◽  
L. K. Isaev ◽  
F. V. Bulygin

The situation that has developed in the International System of Units (SI) as a result of adopting the recommendation of the International Committee of Weights and Measures (CIPM) in 1980, which proposed to consider plane and solid angles as dimensionless derived quantities, is analyzed. It is shown that the basis for such a solution was a misunderstanding of the mathematical formula relating the arc length of a circle with its radius and corresponding central angle, as well as of the expansions of trigonometric functions in series. From the analysis presented in the article, it follows that a plane angle does not depend on any of the SI quantities and should be assigned to the base quantities, and its unit, the radian, should be added to the base SI units. A solid angle, in this case, turns out to be a derived quantity of a plane angle. Its unit, the steradian, is a coherent derived unit equal to the square radian.


2019 ◽  
Vol 13 (1) ◽  
pp. 69-74
Author(s):  
Wang Yazhou ◽  
Xiao Junfeng ◽  
Liu Yongping ◽  
An Jianmin

Background: Various relevant patents and papers which have reported noncircular gears synthesize the advantages of circular gears and cam mechanisms, and are widely used in many types of mechanical instruments. Hobbing is a better method for fabricating noncircular gears. There are 4 linkagemethods to hob noncircular gears. However, which linkage method should be chosen practically has not yet been reported. Objective: The goal of this work is to choose the best linkage method for hobbing noncircular gears. Method: Firstly, the hobbing models of noncircular gears was deduced. Then, based on the model, hobbing linkage methods of noncircular gears were obtained. Thirdly, under different hobbing linkage methods, their aspects (developing regularity of hobbing cutter trace, arc length of program blocks and motion axes of machine tools) were compared. Results: Finally, with the best characteristics of a high density of shaping cutter trace, high uniformity of arc length of program blocks and ease of control, the equal arc-length of gear billet (EALGB) is obtained. It has been proven that EALGB is an excellent linkage method to hob noncircular gears. Conclusion: It has been proven that EALGB is an excellent linkage method to hob noncircular gears.


2021 ◽  
Vol 76 (2) ◽  
Author(s):  
Leonardo Alese

AbstractGiven a pair of real functions (k, f), we study the conditions they must satisfy for $$k+\lambda f$$ k + λ f to be the curvature in the arc-length of a closed planar curve for all real $$\lambda $$ λ . Several equivalent conditions are pointed out, certain periodic behaviours are shown as essential and a family of such pairs is explicitely constructed. The discrete counterpart of the problem is also studied.


Sign in / Sign up

Export Citation Format

Share Document