Globus pallidus internus activity during simultaneous bilateral microelectrode recordings in status dystonicus

2020 ◽  
Vol 163 (1) ◽  
pp. 211-217
Author(s):  
Vincenzo Levi ◽  
A. Franzini ◽  
S. Rinaldo ◽  
S. Coelli ◽  
A. M. Bianchi ◽  
...  
2010 ◽  
Vol 113 (3) ◽  
pp. 634-638 ◽  
Author(s):  
Diana Apetauerova ◽  
Clemens M. Schirmer ◽  
Jay L. Shils ◽  
Janet Zani ◽  
Jeffrey E. Arle

The authors report the cases of 2 young male patients (aged 16 and 26 years) with dystonic cerebral palsy of unknown origin, who developed status dystonicus, an acute and persistent combination of generalized dystonia and chorea. Both patients developed status dystonicus after undergoing general anesthesia, and in 1 case, after administration of metoclopramide. In attempting to control this acute hyperkinetic movement disorder, multiple medication trials failed in both cases and patients required prolonged intubation and sedation with propofol. Bilateral deep brain stimulation of the globus pallidus internus (4 and 2 months after the onset of symptoms in the first and second case, respectively) produced immediate resolution of the hyperkinetic movement disorder in each case. Deep brain stimulation provided persistent suppression of the dystonic movement potential after a follow-up of 30 and 34 months, respectively, as demonstrated by the reemergence of severe dystonia during the end of battery life of the implantable pulse generators that was readily controlled by exchange of the generators in each case.


2018 ◽  
Vol 9 ◽  
Author(s):  
Guanyu Zhu ◽  
Xinyi Geng ◽  
Zheng Tan ◽  
Yingchuan Chen ◽  
Ruili Zhang ◽  
...  

2019 ◽  
Author(s):  
Xiaosong He ◽  
Ganne Chaitanya ◽  
Burcu Asma ◽  
Lorenzo Caciagli ◽  
Danielle S. Bassett ◽  
...  

AbstractFocal to bilateral tonic-clonic seizures are associated with lower quality of life, higher risk of seizure-related injuries, increased chance of sudden unexpected death, as well as unfavorable treatment outcomes. Achieving greater understanding of its underlying circuitry offers better opportunity to control these particularly serious seizures. Towards this goal, we provide a network science perspective of the interactive pathways among basal ganglia, thalamus and the cortex, to explore the imprinting of secondary seizure generalization on the mesoscale brain network in temporal lobe epilepsy. Specifically, we parameterized the functional organization of both the thalamocortical network and the basal ganglia—thalamus network with resting-state functional magnetic resonance imaging in three groups of patients with different focal to bilateral tonic-clonic seizure histories. Using the participation coefficient to describe the pattern of thalamocortical connections among different cortical networks, we showed that, compared to patients with no previous history, those with positive histories of focal to bilateral tonic-clonic seizures, including both remote (none for over one year) and current (within the past year) histories, presented more uniform distribution patterns of thalamocortical connections in the ipsilateral medial-dorsal thalamic nuclei. As a sign of greater thalamus mediated cortico-cortical communication, this result comports with greater susceptibility to secondary seizure generalization from the epileptogenic temporal lobe to broader brain networks in these patients. Using interregional integration to characterize the functional interaction between basal ganglia and thalamus, we demonstrated that patients with current history presented increased interaction between putamen and globus pallidus internus, and decreased interaction between the latter and the thalamus, compared to the other two patient groups. Importantly, through a series of “disconnection” simulations, we showed that these changes in interactive profiles of the basal ganglia—thalamus network in the current history group mainly depended upon the direct but not the indirect basal ganglia pathway. It is intuitively plausible that such disruption in the striatum modulated tonic inhibition of the thalamus from the globus pallidus internus could lead to an under-suppressed thalamus, which in turn may account for their greater vulnerability to secondary seizure generalization. Collectively, these findings suggest that the broken balance between the basal ganglia inhibition and thalamus synchronization can inform the presence and effective control of focal to bilateral tonic-clonic seizures. The mechanistic underpinnings we uncover may shed light on the development of new treatment strategies for patients with temporal lobe epilepsy.


Sign in / Sign up

Export Citation Format

Share Document