Long-term precipitation variability in Morocco and the link to the large-scale circulation in recent and future climates

2003 ◽  
Vol 83 (1-2) ◽  
pp. 67-88 ◽  
Author(s):  
P. Knippertz ◽  
M. Christoph ◽  
P. Speth
Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Yahya Darmawan ◽  
Huang-Hsiung Hsu ◽  
Jia-Yuh Yu

This study aims to explore the contrasting characteristics of large-scale circulation that led to the precipitation anomalies over the northern parts of Sumatra Island. Further, the impact of varying the Asian–Australian Monsoon (AAM) was investigated for triggering the precipitation variability over the study area. The moisture budget analysis was applied to quantify the most dominant component that induces precipitation variability during the JJA (June, July, and August) period. Then, the composite analysis and statistical approach were applied to confirm the result of the moisture budget. Using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Anaysis Interim (ERA-Interim) from 1981 to 2016, we identified 9 (nine) dry and 6 (six) wet years based on precipitation anomalies, respectively. The dry years (wet years) anomalies over the study area were mostly supported by downward (upward) vertical velocity anomaly instead of other variables such as specific humidity, horizontal velocity, and evaporation. In the dry years (wet years), there is a strengthening (weakening) of the descent motion, which triggers a reduction (increase) of convection over the study area. The overall downward (upward) motion of westerly (easterly) winds appears to suppress (support) the convection and lead to negative (positive) precipitation anomaly in the whole region but with the largest anomaly over northern parts of Sumatra. The AAM variability proven has a significant role in the precipitation variability over the study area. A teleconnection between the AAM and other global circulations implies the precipitation variability over the northern part of Sumatra Island as a regional phenomenon. The large-scale tropical circulation is possibly related to the PWC modulation (Pacific Walker Circulation).


2021 ◽  
Author(s):  
◽  
Sapna Rana

<p>Central Southwest Asia (CSWA; 20°–47°N, 40°–85°E) is a water-scarce and a societally vulnerable region, prone to significant variations in precipitation during the winter months of November–April. Wintertime precipitation variations have a direct impact on CSWA's water resources, agricultural productivity, energy use, and human society. Because of the close relationship between climate and human well-being, an improved understanding of winter season precipitation and its variability over CSWA is of critical importance. However, due to multiple regional challenges (e.g. socio-political instability, extreme topographical heterogeneity, poor coverage of in situ stations, and others) analysis of precipitation in this region has been limited.  In an attempt to bridge the existing knowledge gap, this thesis aims to advance our understanding of CSWA's wintertime precipitation climate through three separate, but inter-related studies on 1) evaluation of multi-source gridded precipitation dataset, 2) investigation of spatial and temporal patterns of precipitation and its links with large-scale modes of climate variability, 3) development of a statistical forecast model. Additionally, precipitation evaluation is also relevant to the overlapping and important region of the Indian subcontinent; a detailed seasonal analysis for which is also presented.  First, the performance of several commonly used gridded precipitation products from multiple sources: gauge-based, satellite-derived, and reanalysis is analysed for all four seasons over the Indian Subcontinent. Results show that the degree of uncertainty in all precipitation estimates varies by region (e.g. topographic relief) and the type of precipitation (e.g. convective, orographic). At the seasonal scale, satellite-products perform better, while reanalyses generally overestimate precipitation. Greater discrepancies occur in areas with low gauge densities, owing to which a complete understanding of the accuracy and limitations of precipitation estimates is hampered for the northwestern region of the Indian subcontinent.  In an extension study, ten multi-source precipitation products are evaluated against an ensemble of four gauge-only datasets. This analysis is carried out for CSWA, which also includes the northwestern region of the Indian subcontinent. Spatial and temporal analysis of results shows that GPCC is a suitable observational dataset for studying long-term wintertime precipitation variations over CSWA. The satellite-derived TRMM 3B42-V7 is a potentially reliable alternative to gauge measurements, while the performance of MERRA reanalysis is satisfactory.  Further, the spatial-temporal patterns of wintertime precipitation variability over CSWA are explored. Three leading patterns are identified by empirical orthogonal function (EOF) analysis, and the associated time series are related to global SST and other large-scale atmospheric circulation fields. The leading patterns of winter precipitation are significantly linked with the El Niño–Southern Oscillation (ENSO); East Atlantic–Western Russia (EA-WR); Siberian High; North Pacific Oscillation (NPO); Scandinavian pattern; and the long-term warming of the Indian Ocean SST. The inter-decadal change of relationship between the first-mode of winter precipitation and ENSO is also investigated, which shows that CSWA precipitation variability was closely related to the extratropical EA-WR (tropical ENSO) teleconnection before (after) the 1980's.  Finally, the level and origin of seasonal forecast skill of wintertime precipitation anomalies over CSWA are examined using the statistical method of canonical correlation analysis (CCA). The preceding months’ (September–October) SST is used as predictors, and CCA experiments are performed for two sets of time periods, 1950/51–2014/15 and 1980/81–2014/15. For both prediction periods, the potential source of predictability originates largely from SST variations related to ENSO and the Pacific Decadal Oscillation (PDO). A higher (lower) correlation skill of 0.71 (0.38) is obtained between observations and cross-validated precipitation forecasts for the period 1980/81–2014/15 (1950/51–2014/15); which shows that ENSO played a dominant role in creating skillful predictions for CSWA wintertime precipitation in recent years.</p>


2001 ◽  
Vol 17 ◽  
pp. 275-284 ◽  
Author(s):  
R Quadrelli ◽  
M Lazzeri ◽  
C Cacciamani ◽  
S Tibaldi

2021 ◽  
Author(s):  
Antoine Blanc ◽  
Juliette Blanchet ◽  
Jean-Dominique Creutin

&lt;p&gt;This work analyses the link between Western Europe large-scale circulation and precipitation variability in the Northern French Alps from 1950 to 2017. We consider simple descriptors characterizing the daily 500hPa geopotential height fields. They are the Maximum Pressure Difference - representing the range of geopotential heights over Western Europe -, and the singularity - representing the mean distance between a geopotential shape and its closest analogs, i.e. the way this geopotential shape is reproduced in the climatology. These descriptors are compared to the occurrence of different atmospheric influences - Atlantic, Mediterranean, Northeast, Anticyclonic - and to the leading mode of large-scale circulation variability over Europe - the North Atlantic Oscillation (NAO) - for explaining precipitation variability in the Is&amp;#232;re River catchment from one day to 10 years. We show that the Maximum Pressure Difference and the singularity of geopotential shapes explain a significant part of precipitation variability in the Northern French Alps from 10 days to 10 years, especially in winter (correlation values of 0.7). These descriptors provide much better performance than NAO and the same performance as the occurrence of the Atlantic influence, which is the best performing atmospheric influence. This means that simple characteristics of large-scale circulation - that are easy to implement - provide as much information as weather pattern classification to explain precipitation variability over a medium size mountainous catchment. Furthermore, we show that NAO does not drive the pressure gradient in a domain spreading from the Iberic Peninsula to Southern Great Britain and weakly explains precipitation variability in the Northern French Alps.&lt;/p&gt;


2013 ◽  
Vol 52 (10) ◽  
pp. 2226-2242 ◽  
Author(s):  
Shiori Sugimoto ◽  
Tomonori Sato ◽  
Kazuki Nakamura

AbstractIn this study, long-term visibility data for the Pacific Ocean side of Hokkaido Island, northeast Japan, are investigated to clarify the relationship between interannual variation in summer fog frequency (FF) and large-scale circulation patterns. At Kushiro, a significant FF decrease is found during 1931–2010 even without the influence of the observatory's relocation after 2000. In particular, since the late 1970s, a linear declining trend has accelerated, as evidenced by an increased number of years with very low FF in July and August. To clarify the climatological factor causing the summer FF declining trend at Kushiro, atmospheric vertical conditions in the planetary boundary layer and large-scale circulation are examined during 1989–2009 and 1958–2002, respectively, using available datasets. Composite analyses that are based on radiosonde observations reveal that the shallow fog layer is covered with a strong inversion layer during fog days whereas the inversion layer is absent during nonfog days. Composite circulation anomalies for the low-FF years at Kushiro show an intensified Okhotsk high (OH) pressure feature and southward shrinking of the North Pacific high (NPH) in July, in addition to the eastward displacement or shrinking of the NPH in August. These anomalous synoptic circulation patterns cause weakening in the southerly–southeasterly wind, which reduces sea-fog advection toward Kushiro and prevents the formation of stable stratification over the sea-fog layer. The authors suggest that the interannual variation in summer FF with the recent accelerated decline at Kushiro is primarily controlled by changes in the synoptic circulation associated with the OH and NPH development.


Sign in / Sign up

Export Citation Format

Share Document