Impact of freshwater discharge from the Greenland ice sheet on North Atlantic climate variability

2012 ◽  
Vol 112 (1-2) ◽  
pp. 29-43 ◽  
Author(s):  
Soon-Il An ◽  
Hyerim Kim ◽  
Baek-Min Kim
The Holocene ◽  
2003 ◽  
Vol 13 (3) ◽  
pp. 381-392 ◽  
Author(s):  
Alastair G. Dawson ◽  
Lorne Elliott ◽  
Paul Mayewski ◽  
Peter Lockett ◽  
Sean Noone ◽  
...  

2021 ◽  
Author(s):  
Maria Hoerhold ◽  
Thomas Münch ◽  
Stefanie Weißbach ◽  
Sepp Kipfstuhl ◽  
Bo Vinther ◽  
...  

<p>Climate variability of the Arctic region has been investigated by means of temperature reconstructions based on proxies from various climate archives around the Arctic, compiled over the last 2000a in the so called Arctic2k record. However, the representativeness of the Arctic2k reconstruction for central Greenland remains unclear, since only a few ice cores have been included in the reconstruction, and observations from the Greenland Ice Sheet (GIC) report ambiguous warming trends for the end of the 20th and the beginning of the 21st century which are not displayed by Arctic2k. Today, the GIC experiences periods with temperatures close to or above the freezing point at high elevations, area-wide melting and mass loss. In order to assess the recent warming as signature of global climate change, records of past climate changes with appropriate temporal and spatial coverage can serve as a benchmark for naturally driven climate variability. Instrumental records for Greenland are short and geographically sparse, and existing temperature reconstructions from single ice cores are noisy, leading to an inconclusive assessment of the recent warming for Greenland.</p><p>Here, we provide a Greenland firn-core stack covering the time span of the last millennium until the first decade of the 21<sup>st </sup>century in unprecedented quality by re-drilling as well as analyzing 16 existing firn core sites. We find a strong decadal to bi-decadal natural variability in the record, and, while the record exhibits several warming events with trends that show a similar amplitude as the recent one, we find that the recent absolute values of stable oxygen isotope composition are unprecedented for the last 1000 years.</p><p> </p><p>Comparing our Greenland record with the Arctic 2k temperature reconstruction shows that the correlation between the two records changes throughout the last millennium. While in the periods of 1200-1300 and 1400-1650 CE the records correlate positively, between 1300 and 1400 and 1650-1700 CE shorter periods with negative correlation are found. Since then the correlation is characterized by alternation between positive and zero correlation, with a drop towards negative values at the end of the 20<sup>th</sup> century. Including re-analysis data, we hypothesize that the climate on top of the GIC was decoupled from the surrounding Arctic for the last decades, leading to the observed mismatch in observations of warming trends.</p><p>We suggest that the recently observed Greenland temperatures are a superposition of a strong natural variability with an anthropogenic long-term trend. Our findings illustrate that global warming has reached the interior of the Greenland ice sheet, which will have implications for its surface mass balance and Greenland’s future contribution to sea level rise.</p><p>Our record complements the Arctic 2k record to a profound view on the Arctic climate variability, where regional compilations may not be representative for specific areas.</p>


2021 ◽  
Author(s):  
Sophie Stolzenberger ◽  
Roelof Rietbroek ◽  
Claudia Wekerle ◽  
Bernd Uebbing ◽  
Jürgen Kusche

<p>The impact of Greenland freshwater on oceanic variables in the North Atlantic has been controversially discussed in the past. Within the framework of the German research project GROCE (Greenland Ice Sheet Ocean Interaction), we present a comprehensive study using ocean modelling results including and excluding the Greenland freshwater flux. The aim of this study is whether signatures of Greenland ice sheet melting found in ocean model simulations are visible in the observations. Therefore, we estimate changes in temperature, salinity, steric heights and sea level anomalies since the 1990s. The observational database includes altimetric and gravimetric satellite data as well as Argo floats. We will discuss similarities/differences between model simulations and observations for smaller regions around Greenland in the North Atlantic. As these experiments are available for two different horizontal resolutions, we will furthermore be able to assess the effects of an increased model resolution.</p>


2021 ◽  
Author(s):  
Brian Crow ◽  
Matthias Prange ◽  
Michael Schulz

<p>Historical estimates of the melt rate and extent of the Greenland ice sheet (GrIS) are poorly constrained, due both to incomplete understanding of relevant ice dynamics and the magnitude of forcing acting upon the ice sheet (e.g., Alley et al. 2010). Previous assessments of the Marine Isotope Stage 11 (MIS-11) interglacial period have determined it was likely one of the warmest and longest interglacial periods of the past 800 kyr, leading to melt of at least half the present-day volume of the Greenland ice sheet (Robinson et al. 2017). An enhanced Atlantic meridional overturning circulation (AMOC) is commonly cited as sustaining the anomalous warmth across the North Atlantic and Greenland (e.g., Rachmayani et al. 2017), but little is known about potential atmospheric contributions. Paleorecords from this period are sparse, and detailed climate modelling studies of this period have been heretofore very limited. The climatic conditions over Greenland and the North Atlantic region, and how they may have contributed to the melt of the GrIS during MIS-11, are therefore not well understood. By utilizing climate simulations with the Community Earth System Model (CESM), our study indicates that changes in atmospheric eddy behavior, including eddy fluxes of heat and precipitation, made significant contributions to the negative mass balance conditions over the GrIS during the MIS-11 interglacial. Thus, accounting for the effects of atmospheric feedbacks in a warmer-than-present climate is a necessary component for future analyses attempting to better constrain the extent and rate of melt of the GrIS.</p>


Nature ◽  
2012 ◽  
Vol 484 (7393) ◽  
pp. 228-232 ◽  
Author(s):  
Ben B. B. Booth ◽  
Nick J. Dunstone ◽  
Paul R. Halloran ◽  
Timothy Andrews ◽  
Nicolas Bellouin

1999 ◽  
Vol 23 (2) ◽  
pp. 119-131 ◽  
Author(s):  
R. B. Alley ◽  
P. A. Mayewski ◽  
E. S. Saltzman

2012 ◽  
Vol 412 ◽  
pp. 103-109 ◽  
Author(s):  
Pablo del Monte-Luna ◽  
Vicente Guzmán-Hernández ◽  
Eduardo A. Cuevas ◽  
Francisco Arreguín-Sánchez ◽  
Daniel Lluch-Belda

Sign in / Sign up

Export Citation Format

Share Document