Possible relationship between East Asian summer monsoon and western North Pacific tropical cyclone genesis frequency

2015 ◽  
Vol 124 (1-2) ◽  
pp. 81-90 ◽  
Author(s):  
Ki-Seon Choi ◽  
Yumi Cha ◽  
Hae-Dong Kim ◽  
Sung-Dae Kang
SOLA ◽  
2012 ◽  
Vol 8 (0) ◽  
pp. 137-140 ◽  
Author(s):  
Satoru Yokoi ◽  
Chiharu Takahashi ◽  
Kazuaki Yasunaga ◽  
Ryuichi Shirooka

2016 ◽  
Vol 29 (17) ◽  
pp. 6363-6382 ◽  
Author(s):  
Zehao Song ◽  
Congwen Zhu ◽  
Jingzhi Su ◽  
Boqi Liu

Abstract The present study used harmonic and multivariate empirical orthogonal function (MV-EOF) analyses to identify the existence of climatological intraseasonal oscillation (CISO) in the diabatic heating, precipitation, and circulation of the East Asian summer monsoon (EASM). The strongest CISO signals are found in the north of the western North Pacific, possibly because of the horizontal gradient of diabatic heating induced by the seasonal land–sea thermal contrast. Further, the phase relationship between the diabatic heating components maintains the EASM CISO. The first two coupling modes of EASM CISO in the circulation are robust during May through August, with a period of 40–80 days, and exhibit phase locking to the stepwise establishment of the EASM, which reveals the coaction of the Mongolian cyclone (MC) around Lake Baikal at 850 hPa, the western North Pacific subtropical high (WNPSH) at 500 hPa, and the South Asian high (SAH) over the Tibetan Plateau (TP) at 200 hPa. The first mode shows that the jointly enhanced MC, WNPSH, and SAH correspond to a tripole rainfall anomaly with strong mei-yu and baiu fronts over East Asia. The second mode, however, indicates the eastward and northwestward propagation of MC and WNPSH, respectively, with suppressed SAH, as well as a dipole rainfall anomaly over East Asia. Both the observations and numerical simulation verify the importance of daily diabatic heating and SST in maintaining the CISO modes over the WNP, where the condensation heating related to atmospheric forcing determines the local intraseasonal air–sea interaction.


2011 ◽  
Vol 37 (11-12) ◽  
pp. 2199-2216 ◽  
Author(s):  
Dao-Yi Gong ◽  
Jing Yang ◽  
Seong-Joong Kim ◽  
Yongqi Gao ◽  
Dong Guo ◽  
...  

2020 ◽  
Author(s):  
Tat Fan Cheng ◽  
Mengqian Lu

<p>There has been growing interest in studying precipitation recycling and identifying relationships between moisture sources and receptors. The network built upon the relationships is crucial for the knowledge of the atmospheric water cycle, weather prediction, and adaptation to hydroclimatic disasters. This study aims to provide an interesting perspective of a Source-to-Receptor (SR) network to study the dynamics of the East Asian Summer Monsoon (EASM). By prescribing 24 sources and 6 EASM subregions, the SR network during the wet season is quantified using the two-dimensional physically-based Dynamical Recycling Model (DRM). Results reveal that in addition to oceanic sources, land sources including the often-overlooked plateau regions play an important role in supplying moisture to most EASM subregions. A seesaw relationship of the Indian Ocean/South Asia sector from April to June and the Pacific Ocean/East Asia sector from July to September is evidenced in the intraseasonal variation of the SR network for EASM subregions including South China coast and Taiwan, Yangtze River basin, South Japan and Korean Peninsula. Conversely, weaker intraseasonal variation is seen in the SR network for the Yellow River basin and North China. During heavy rainfall days, the zonal oscillation of western North Pacific Subtropical High (WNPSH) is deemed crucial to modulate the SR network through enhanced contributions from Bay of Bengal, Indochina, Indian subcontinent and Southwest China (the Philippine Sea and western North Pacific) during the positive (negative) phase. Coupled circulations such as two distinct pressure dipoles and coherent upper-level wave trains from mid-latitudes are responsible for bridging the moisture routes. Lastly, preceding winter/springtime El Niño is likely associated with the enhanced (weakened) moisture supply from the southwesterly (Pacific Ocean) sources. Longer-term variabilities such as the Pacific Decadal Oscillation is also considered influential to the SR network. We believe that the attributable atmospheric bridges and the SR network itself can offer insights to the current understanding of EASM and model simulations of the monsoon systems and the water cycles.</p>


Sign in / Sign up

Export Citation Format

Share Document