Assessment of human bio-meteorological environment over the Tibetan Plateau region based on CORDEX climate model projections

2018 ◽  
Vol 137 (1-2) ◽  
pp. 893-907 ◽  
Author(s):  
Xiaoli Chi ◽  
Ulrich Cubasch ◽  
Sahar Sodoudi
2017 ◽  
Vol 11 (5) ◽  
pp. 2329-2343 ◽  
Author(s):  
Taylor Smith ◽  
Bodo Bookhagen ◽  
Aljoscha Rheinwalt

Abstract. High Mountain Asia (HMA) – encompassing the Tibetan Plateau and surrounding mountain ranges – is the primary water source for much of Asia, serving more than a billion downstream users. Many catchments receive the majority of their yearly water budget in the form of snow, which is poorly monitored by sparse in situ weather networks. Both the timing and volume of snowmelt play critical roles in downstream water provision, as many applications – such as agriculture, drinking-water generation, and hydropower – rely on consistent and predictable snowmelt runoff. Here, we examine passive microwave data across HMA with five sensors (SSMI, SSMIS, AMSR-E, AMSR2, and GPM) from 1987 to 2016 to track the timing of the snowmelt season – defined here as the time between maximum passive microwave signal separation and snow clearance. We validated our method against climate model surface temperatures, optical remote-sensing snow-cover data, and a manual control dataset (n = 2100, 3 variables at 25 locations over 28 years); our algorithm is generally accurate within 3–5 days. Using the algorithm-generated snowmelt dates, we examine the spatiotemporal patterns of the snowmelt season across HMA. The climatically short (29-year) time series, along with complex interannual snowfall variations, makes determining trends in snowmelt dates at a single point difficult. We instead identify trends in snowmelt timing by using hierarchical clustering of the passive microwave data to determine trends in self-similar regions. We make the following four key observations. (1) The end of the snowmelt season is trending almost universally earlier in HMA (negative trends). Changes in the end of the snowmelt season are generally between 2 and 8 days decade−1 over the 29-year study period (5–25 days total). The length of the snowmelt season is thus shrinking in many, though not all, regions of HMA. Some areas exhibit later peak signal separation (positive trends), but with generally smaller magnitudes than trends in snowmelt end. (2) Areas with long snowmelt periods, such as the Tibetan Plateau, show the strongest compression of the snowmelt season (negative trends). These trends are apparent regardless of the time period over which the regression is performed. (3) While trends averaged over 3 decades indicate generally earlier snowmelt seasons, data from the last 14 years (2002–2016) exhibit positive trends in many regions, such as parts of the Pamir and Kunlun Shan. Due to the short nature of the time series, it is not clear whether this change is a reversal of a long-term trend or simply interannual variability. (4) Some regions with stable or growing glaciers – such as the Karakoram and Kunlun Shan – see slightly later snowmelt seasons and longer snowmelt periods. It is likely that changes in the snowmelt regime of HMA account for some of the observed heterogeneity in glacier response to climate change. While the decadal increases in regional temperature have in general led to earlier and shortened melt seasons, changes in HMA's cryosphere have been spatially and temporally heterogeneous.


2019 ◽  
Vol 32 (20) ◽  
pp. 7037-7053
Author(s):  
Hongwen Zhang ◽  
Yanhong Gao ◽  
Jianwei Xu ◽  
Yu Xu ◽  
Yingsha Jiang

Abstract To meet the requirement of high-resolution datasets for many applications, a dynamical downscaling approach using a regional climate model (the WRF Model) driven by a global climate model (CCSM4) has been adopted. This study focuses on projections of future moisture flux changes over the Tibetan Plateau (TP). First, the downscaling results for the historical period (1980–2005) are evaluated for precipitation P, evaporation E, and precipitation minus evaporation P − E against Global Land Data Assimilation System (GLDAS) data. The mechanism of P − E changes is analyzed by decomposition into dynamic, thermodynamic, and transient eddy components. Whether the historical period changes and mechanisms continue into the future (2010–2100) is investigated using the WRF and CCSM model projections under the RCP4.5 and RCP8.5 scenarios. Compared with coarse-resolution forcing, downscaling was found to better reproduce the historical spatial patterns and seasonal mean of annual average P, E, and P − E over the TP. WRF projects a diverse spatial variation of P − E changes, with an increase in the northern TP and a decrease in the southern TP, compared with the uniform increase in CCSM. The dynamic component dominates P − E changes for the historical period in both the CCSM and WRF projections. In the future, however, the thermodynamic component in CCSM dominates P − E changes under RCP4.5 and RCP8.5 from the near-term (2010–39) to the long-term (2070–99) future. Unlike the CCSM projections, the WRF projections reproduce the mechanism seen in the historical period—that is, the dynamic component dominates P − E changes. Furthermore, future P − E changes in the dynamical downscaling are less sensitive to warming than its coarse-resolution forcing.


2020 ◽  
Vol 7 (3) ◽  
pp. 516-533 ◽  
Author(s):  
Jianchun Bian ◽  
Dan Li ◽  
Zhixuan Bai ◽  
Qian Li ◽  
Daren Lyu ◽  
...  

Abstract Due to its surrounding strong and deep Asian summer monsoon (ASM) circulation and active surface pollutant emissions, surface pollutants are transported to the stratosphere from the Tibetan Plateau region, which may have critical impacts on global climate through chemical, microphysical and radiative processes. This article reviews major recent advances in research regarding troposphere–stratosphere transport from the region of the Tibetan Plateau. Since the discovery of the total ozone valley over the Tibetan Plateau in summer from satellite observations in the early 1990s, new satellite-borne instruments have become operational and have provided significant new information on atmospheric composition. In addition, in situ measurements and model simulations are used to investigate deep convection and the ASM anticyclone, surface sources and pathways, atmospheric chemical transformations and the impact on global climate. Also challenges are discussed for further understanding critical questions on microphysics and microchemistry in clouds during the pathway to the global stratosphere over the Tibetan Plateau.


2019 ◽  
Vol 20 (10) ◽  
pp. 2043-2055 ◽  
Author(s):  
Qingyun Bian ◽  
Zhongfeng Xu ◽  
Long Zhao ◽  
Yong-Fei Zhang ◽  
Hui Zheng ◽  
...  

Abstract Snow cover affects the thermal conditions of the Tibetan Plateau through snow–albedo feedback and snowmelt, which, in turn, modulates the Asian summer monsoon climate. An accurate estimation of the snow condition on the Tibetan Plateau is therefore of great importance in both seasonal forecasts and climate studies. Estimation of snow water equivalent (SWE) over the Tibetan Plateau is challenging due to the high altitude, complex terrain, and insufficient in situ observations. Multiple SWE products derived from satellite estimates, reanalyses, regional climate model simulations, and land data assimilations are intercompared in terms of daily, seasonal, and annual variations and are then evaluated against in situ SWE observations. The results show a relatively consistent seasonal to interannual variability of the SWE estimates among the products. The discrepancies in magnitude are large, however, especially in winter and spring. Evaluation against in situ SWE observations indicates that none of these products is capable of accurately characterizing both the spatial pattern and temporal variations.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2805
Author(s):  
Sansan Feng ◽  
Hongwei Lu ◽  
Tianci Yao

Microplastics (MPs) are ubiquitous in the environment and have been drawing increasing attention; however, MPs’ occurrence and behavior in remote areas are not well understood. In this study, we quantified and characterized MPs from surface waters and sediments in a remote area, namely the Tibetan Plateau, China. The samples were collected from the Lhasa River and the lower reaches of the Brahmaputra River to better understand MPs’ sources to rivers of the Tibetan Plateau. MPs’ concentrations in water and sediment were 735 items/m3 and 51 items/kg, respectively, and the dominating MPs observed were fibers with size ranging from 100 to 500 µm. MP abundance increased nearly two-fold from upstream to downstream in the Brahmaputra River, associated with the inputs from downstream human activities and the inflows of tributaries (especially the Lhasa River). This study provides important bases for analyzing MPs migration processes in the plateau region.


2020 ◽  
Vol 33 (15) ◽  
pp. 6583-6598
Author(s):  
Jianglin Wang ◽  
Bao Yang ◽  
Fredrik Charpentier Ljungqvist

AbstractAccurate projections of moisture variability across the Tibetan Plateau (TP) are crucial for managing regional water resources, ecosystems, and agriculture in densely populated downstream regions. Our understanding of how moisture conditions respond to increasing temperatures over the TP is still limited, due to the short length of instrumental data and the limited spatial coverage of high-resolution paleoclimate proxy records in this region. This study presents a new, early-summer (May–June) self-calibrating Palmer drought severity index (scPDSI) reconstruction for the southeastern TP (SETP) covering 1135–2010 CE using 14 tree-ring records based on 1669 individual width sample series. The new reconstruction reveals that the SETP experienced the longest period of pluvial conditions in 1154–75 CE, and the longest droughts during the periods 1262–80 and 1958–76 CE. The scPDSI reconstruction shows stable and significant in-phase relationships with temperature at both high and low frequencies throughout the past 900 years. This supports the hypothesis that climatic warming may increase moisture by enhancing moisture recycling and convective precipitation over the SETP; it is also consistent with climate model projections of wetter conditions by the late twenty-first century in response to global warming.


2020 ◽  
Vol 211 ◽  
pp. 103408
Author(s):  
Zhiwen Dong ◽  
Janice Brahney ◽  
Shichang Kang ◽  
James Elser ◽  
Ting Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document