Climatic hazards for native tree species in Poland with special regards to silver fir (Abies alba Mill.) and European beech (Fagus sylvatica L.)

2021 ◽  
Vol 144 (1-2) ◽  
pp. 581-591
Author(s):  
Krzysztof Jarzyna
Dendrobiology ◽  
2020 ◽  
Vol 83 ◽  
pp. 75-84 ◽  
Author(s):  
Ion Catalin Petritan ◽  
Victor-Vasile Mihăilă ◽  
Cosmin Ion Bragă ◽  
Marlène Boura ◽  
Diana Vasile ◽  
...  

Trees ◽  
2017 ◽  
Vol 32 (1) ◽  
pp. 337-348 ◽  
Author(s):  
Ruth-Kristina Magh ◽  
Michel Grün ◽  
Viola Elisa Knothe ◽  
Tobias Stubenazy ◽  
Javier Tejedor ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 677
Author(s):  
Sarah L. Hasstedt ◽  
Peter Annighöfer

Black cherry (Prunus serotina Ehrh.) is considered one of the most invasive tree species in central Europe and causes problems for both nature conservation and silviculture. Besides mechanical control treatments, a suggested control method to prevent its ongoing spread is to underplant shade-tolerant native tree species. Therefore, we combined two mechanical treatments, with underplanting of European beech (Fagus sylvatica L.) or small-leaved lime (Tilia cordata Mill.) on fenced and unfenced plots. After the first growing season, survival rates were evaluated, and selected seedlings were destructively harvested to analyze their growth performance and leaf morphology in association with the different light regimes resulting from mechanical treatments Survival rates for both seedlings were very high (>95%). Survival rates were higher on fenced plots than on unfenced plots, most likely as result of browsing. The mortality of F. sylvatica decreased with increasing light availability on fenced plots. The mortality of T. cordata did not change along the light gradient. After one vegetation period no differences with respect to biomass allocation could be detected along the light gradient. However, the specific leaf areas of both species responded similarly, decreasing with increasing light availability. In summary, both species were able to establish and survive in the dense P. serotina understory and might have the potential to outcompete the invasive alien species in the long run.


2020 ◽  
Vol 50 (7) ◽  
pp. 689-703 ◽  
Author(s):  
Hans Pretzsch ◽  
Torben Hilmers ◽  
Peter Biber ◽  
Admir Avdagić ◽  
Franz Binder ◽  
...  

In Europe, mixed mountain forests, primarily comprised of Norway spruce (Picea abies (L.) Karst.), silver fir (Abies alba Mill.), and European beech (Fagus sylvatica L.), cover about 10 × 106 ha at elevations between ∼600 and 1600 m a.s.l. These forests provide invaluable ecosystem services. However, the growth of these forests and the competition among their main species are expected to be strongly affected by climate warming. In this study, we analyzed the growth development of spruce, fir, and beech in moist mixed mountain forests in Europe over the last 300 years. Based on tree-ring analyses on long-term observational plots, we found for all three species (i) a nondecelerating, linear diameter growth trend spanning more than 300 years; (ii) increased growth levels and trends, the latter being particularly pronounced for fir and beech; and (iii) an elevation-dependent change of fir and beech growth. Whereas in the past, the growth was highest at lower elevations, today’s growth is superior at higher elevations. This spatiotemporal pattern indicates significant changes in the growth and interspecific competition at the expense of spruce in mixed mountain forests. We discuss possible causes, consequences, and silvicultural implications of these distinct growth changes in mixed mountain forests.


2017 ◽  
Vol 45 (2) ◽  
pp. 646-654 ◽  
Author(s):  
Albert REIF ◽  
Fotios XYSTRAKIS ◽  
Stefanie GÄRTNER ◽  
Uwe SAYER

An increase in drought could cause shifts in species composition and vegetation structure. In forests it limits the occurrence of drought sensitive tree species which become replaced by drought tolerant tree species and forest communities. Under temperate macroclimatic conditions, European beech (Fagus sylvatica L.) naturally dominates the forested landscape, except on extremely shallow soil in combination with high irradiation. On these sites beech reaches its drought limit, and is replaced by forests dominated by species like downy Oak (Quercus pubescens s.l.) and English Oak (Quercus petraea L). Phytosociological and ecological data were collected in the transition (ecotone) between European beach stands and stands of more drought tolerant species in order to quantify the drought intensity threshold, above which beech is replaced by drought tolerant species. It was shown that favourable topographic and soil conditions partially compensated the unsuitable climatic conditions for beech. The ecotone between these forest types was found to be characterized by shallow soils with an available soil water storage capacity of 73 l/m² or less, and an irradiation intensity of 6000 MJ/m2 or more during the growing season. This indicates that under conditions of climate change beech would naturally still remain the dominant tree species on the majority of central European forest sites.


Climate ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 105
Author(s):  
Boris Bonn ◽  
Jürgen Kreuzwieser ◽  
Ruth-Kristina Magh ◽  
Heinz Rennenberg ◽  
Dirk Schindler ◽  
...  

The anticipated climate change during the next decades is posing crucial challenges to ecosystems. In order to decrease the vulnerability of forests, introducing tree species’ mixtures are a viable strategy, with deep-rooting native Silver fir (Abies alba) being a primary candidate for admixture into current pure stands of European beech (Fagus sylvatica) especially in mountainous areas. Such a change in forest structure also has effects on the regional scale, which, however, have been seldomly quantified. Therefore, we measured and modeled radiative balance and air chemistry impacts of admixing Silver fir to European beech stands, including changes in biogenic volatile organic compound emissions. An increased fraction of Silver fir caused a smaller albedo and a (simulated) larger evapotranspiration, leading to a dryer and warmer forest. While isoprene emission was negligible for both species, sesquiterpene and monoterpene emissions were larger for fir than for beech. From these differences, we derived that ozone concentration as well as secondary organic aerosols and cloud condensation nuclei would increase regionally. Overall, we demonstrated that even a relatively mild scenario of tree species change will alter the energy balance and air quality in a way that could potentially influence the climate on a landscape scale.


Sign in / Sign up

Export Citation Format

Share Document