air chemistry
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 26)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Shidong Fan ◽  
Ying Li

Abstract. Relationships between oceanic emissions and air chemistry are intricate and still not fully understood. For regional air chemistry, a better understanding of marine halogen emission on hydroxyl (OH) radical is crucial. OH radical is a key species in atmospheric chemistry because it can oxidize almost all trace species in the atmosphere. In the marine atmosphere, OH level could be significantly affected by the halogen species emitted from the ocean. However, due to the complicated interactions of halogens with OH through different pathways, it is not well understood how halogens influence OH and even great uncertain in the signs of net effect. Therefore, in this study, we aim to quantify the impact of marine-emitted halogens (including Cl, Br, and I) through different pathways on OH in the high OH season by using WRF-CMAQ model with process analysis and state-of-the-art halogen chemistry in the East Asia Seas. Results show a very complicated response of OH production rate (POH) to marine halogen emissions. The monthly POH is generally decreased over the ocean with maxima of about 10–15 % in the Philippine Sea, but is increased in many nearshore areas with maxima of about 7–9 % in the Bohai Sea. In the coastal areas of southern China, the monthly POH could also decrease 3–5 % in the Greater Bay Area, but with a daytime hourly maximum decrease over 30 %. Analysis to the individual reactions using integrated reaction rate (IRR) show that the net change of POH is controlled by the competitions of three main pathways through different halogen species. Sea spray aerosols (SSA) and inorganic iodine gases are the main species to influence the strengths of these three pathways and therefore have the most significant impacts on POH. Both of these two types of species decrease POH through physical processes, while generally increase POH through chemical processes. In the ocean atmosphere, the controlling species are inorganic iodine gases and the complicated iodine chemistry determines the basic pattern of ΔPOH, while over the continent, SSA is the controlling species and the SSA extinction effect leads to the negative ΔPOH in the southern China. Our results indicate that marine-emitted halogen species have notable impacts over the ocean and have potential impact on the coastal atmospheric oxidation. The identified main (previously known or unknown) pathways and their controlling factors from different halogen species to OH radical explains the halogen-induced change of POH East Asia and also can be applied in other circumstances (e.g., different domains, regions, and emission rates).


2021 ◽  
Vol 6 (63) ◽  
pp. 3224
Author(s):  
David Shaw ◽  
Nicola Carslaw

Author(s):  
Christian Mulder ◽  
Erminia Conti ◽  
Salvatore Saccone ◽  
Concetta Federico

AbstractGlobal warming and air pollution affect the transmission pathway and the survival of viruses, altering the human immune system as well. The first wave of the COVID-19 pandemic dramatically highlights the key roles of climate and air chemistry in viral epidemics. The elongated form of the Italian peninsula and the two major islands (the largest in Europe) is a perfect case study to assess some of these key roles, as the fate of the virus is mirroring the industrialization in the continental part of our country. Fine particulate matter (PM2.5), geography, and climate explain what is happening in Italy and support cleaner air actions to address efficiently other outbreaks. Besides the environmental factors, future works should also address the genetic difference among individuals to explain the spatial variability of the human response to viral infections.


2021 ◽  
Vol 14 (1) ◽  
pp. 239-268
Author(s):  
Teresa Jorge ◽  
Simone Brunamonti ◽  
Yann Poltera ◽  
Frank G. Wienhold ◽  
Bei P. Luo ◽  
...  

Abstract. Balloon-borne water vapour measurements in the upper troposphere and lower stratosphere (UTLS) by means of frost point hygrometers provide important information on air chemistry and climate. However, the risk of contamination from sublimating hydrometeors collected by the intake tube may render these measurements unusable, particularly after crossing low clouds containing supercooled droplets. A large set of (sub)tropical measurements during the 2016–2017 StratoClim balloon campaigns at the southern slopes of the Himalayas allows us to perform an in-depth analysis of this type of contamination. We investigate the efficiency of wall contact and freezing of supercooled droplets in the intake tube and the subsequent sublimation in the UTLS using computational fluid dynamics (CFD). We find that the airflow can enter the intake tube with impact angles up to 60∘, owing to the pendulum motion of the payload. Supercooled droplets with radii > 70 µm, as they frequently occur in mid-tropospheric clouds, typically undergo contact freezing when entering the intake tube, whereas only about 50 % of droplets with 10 µm radius freeze, and droplets < 5 µm radius mostly avoid contact. According to CFD, sublimation of water from an icy intake can account for the occasionally observed unrealistically high water vapour mixing ratios (χH2O > 100 ppmv) in the stratosphere. Furthermore, we use CFD to differentiate between stratospheric water vapour contamination by an icy intake tube and contamination caused by outgassing from the balloon and payload, revealing that the latter starts playing a role only during ascent at high altitudes (p < 20 hPa).


2020 ◽  
Author(s):  
Albert Ansmann ◽  
Kevin Ohneiser ◽  
Rodanthi-Elisavet Mamouri ◽  
Daniel A. Knopf ◽  
Igor Veselovskii ◽  
...  

Abstract. We present retrievals of tropospheric and stratospheric height profiles of particle mass, volume, and surface area concentrations in the case of wildfire smoke layers as well as estimates of smoke-related cloud condensation nucleus (CCN) and ice-nucleating particle (INP) concentrations from single-wavelength backscatter lidar measurements at ground and in space. A central role in the data analysis play conversion factors to convert the measured optical into microphysical properties. The set of needed conversion parameters for wildfire smoke are derived from AERONET observations of major smoke events caused by record-breaking wildfires in western Canada in August 2017 and southeastern Australia in January–February 2020. The new smoke analysis scheme is applied to stratospheric CALIPSO observations of fresh smoke plumes over northern Canada in 2017 and New Zealand in January 2020 and to ground-based lidar observation in southern Chile in aged Australian smoke layers in January 2020. These case studies show the potential of spaceborne and ground-based lidars to document large-scale and long-lasting wildfire smoke events in large detail and thus to provide valuable information for climate-, cloud-, and air chemistry modeling efforts performed to investigate the role of wildfire smoke in the atmospheric system.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Poul Grinder-Hansen ◽  
Ulla Kjær ◽  
Morten Ryhl-Svendsen ◽  
Maria Perla Colombini ◽  
Ilaria Degano ◽  
...  

Abstract The cathedral in Odense, Denmark, has for nine centuries held the relics of the Danish King St Canute the Holy and his brother Benedikt. They were both murdered in the predecessor church at the site in AD 1086, and Canute was sanctified in already in AD 1100. The history of the relics has been that of turmoil at times, varying from initial worship of the Catholic believers, to being walled up and hidden away after the protestant reformation in AD 1536, and since the 19th Century on display as important heritage objects of national importance. In the present work we have characterised some of the textiles and analysed the air inside the glass showcases exhibiting the 11th Century wooden coffins holding the remains of St King Canute the Holy and his brother together with some precious textiles. Contrary to previous belief, we now prove that all the textiles analysed have the same age, which is consistent with the time of the enshrinement of the King and his brother in AD 1100. It is also shown that some of the textiles were treated with paraffin wax, most likely during attempts at conservation at the National Museum in the nineteenth century. The results of the air chemistry analyses show the problematic side of simultaneously storing of slowly decaying wood, fine textiles, and human bones in rather airtight environments. The wood continuously releases organic acids, the soaring concentrations of which are potentially harmful to the 11th Century textiles and probably also to the bones.


Climate ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 105
Author(s):  
Boris Bonn ◽  
Jürgen Kreuzwieser ◽  
Ruth-Kristina Magh ◽  
Heinz Rennenberg ◽  
Dirk Schindler ◽  
...  

The anticipated climate change during the next decades is posing crucial challenges to ecosystems. In order to decrease the vulnerability of forests, introducing tree species’ mixtures are a viable strategy, with deep-rooting native Silver fir (Abies alba) being a primary candidate for admixture into current pure stands of European beech (Fagus sylvatica) especially in mountainous areas. Such a change in forest structure also has effects on the regional scale, which, however, have been seldomly quantified. Therefore, we measured and modeled radiative balance and air chemistry impacts of admixing Silver fir to European beech stands, including changes in biogenic volatile organic compound emissions. An increased fraction of Silver fir caused a smaller albedo and a (simulated) larger evapotranspiration, leading to a dryer and warmer forest. While isoprene emission was negligible for both species, sesquiterpene and monoterpene emissions were larger for fir than for beech. From these differences, we derived that ozone concentration as well as secondary organic aerosols and cloud condensation nuclei would increase regionally. Overall, we demonstrated that even a relatively mild scenario of tree species change will alter the energy balance and air quality in a way that could potentially influence the climate on a landscape scale.


Author(s):  
J.E. Higham ◽  
C. Acosta Ramírez ◽  
M.A. Green ◽  
A. P. Morse

Abstract On the 23 March 2020, a country-wide COVID-19 lockdown was imposed on the UK. The following 100 days saw anthropogenic movements quickly halt, before slowly easing back to a “new” normality. In this short communication, we use data from official UK air-quality sensors (DEFRA AURN) and the UK Met Office stations to show how lockdown measures affected air quality in the UK. We compare the 100 days post-lockdown (23 March to 30 June 2020) with the same period from the previous 7 years. We find, as shown in numerous studies of other countries, the nitrogen oxides levels across the country dropped substantially (∼ 50%). However, we also find the ozone levels increased (∼ 10%), and the levels of sulphur dioxide more than doubled across the country. These changes, driven by a complex balance in the air chemistry near the surface, may reflect the influence of low humidity as suggested by Met Office data, and potentially, the reduction of nitrogen oxides and their interactions with multiple pollutants.


Sign in / Sign up

Export Citation Format

Share Document