Direct inoculation of RNA transcripts from an infectious cDNA clone of porcine reproductive and respiratory syndrome virus (PRRSV) into the lymph nodes and tonsils of pigs initiates PRRSV infection in vivo

2007 ◽  
Vol 152 (7) ◽  
pp. 1383-1387 ◽  
Author(s):  
K. F. Key ◽  
J. DiCristina ◽  
J. Gillespie ◽  
D. K. Guenette ◽  
X. J. Meng
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gines Ávila-Pérez ◽  
Aitor Nogales ◽  
Jun-Gyu Park ◽  
Desarey Morales Vasquez ◽  
David A. Dean ◽  
...  

2000 ◽  
Vol 31 (1) ◽  
pp. 59-60
Author(s):  
P. J.G.M. Steverink ◽  
J. M.A. Pol ◽  
J.N.A. Bos-de Ruijter ◽  
J. J.M. Meulenberg

Author(s):  
Jiaying Zhu ◽  
Changhao Li ◽  
Xu Peng ◽  
Xiuren Zhang

Abstract The majority of the genome is transcribed to RNA in living organisms. RNA transcripts can form astonishing arrays of secondary and tertiary structures via Watson-Crick, Hoogsteen or wobble base pairing. In vivo, RNA folding is not a simple thermodynamics event of minimizing free energy. Instead, the process is constrained by transcription, RNA binding proteins (RBPs), steric factors and micro-environment. RNA secondary structure (RSS) plays myriad roles in numerous biological processes, such as RNA processing, stability, transportation and translation in prokaryotes and eukaryotes. Emerging evidence has also implicated RSS in RNA trafficking, liquid-liquid phase separation and plant responses to environmental variations such as temperature and salinity. At the molecular level, RSS is correlated with regulating splicing, polyadenylation, protein systhsis, and miRNA biogenesis and functions. In this review, we summarized newly reported methods for probing RSS in vivo and functions and mechanisms of RSS in plant physiology.


Author(s):  
Hongqing Zhu ◽  
Yin Liu ◽  
Yingyun Cai ◽  
Dongdong Yu ◽  
Yinghui Pu ◽  
...  

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 146
Author(s):  
Markéta Jirátová ◽  
Andrea Gálisová ◽  
Maria Rabyk ◽  
Eva Sticová ◽  
Martin Hrubý ◽  
...  

Early detection of metastasis is crucial for successful cancer treatment. Sentinel lymph node (SLN) biopsies are used to detect possible pathways of metastasis spread. We present a unique non-invasive diagnostic alternative to biopsy along with an intraoperative imaging tool for surgery proven on an in vivo animal tumor model. Our approach is based on mannan-based copolymers synergistically targeting: (1) SLNs and macrophage-infiltrated solid tumor areas via the high-affinity DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) receptors and (2) tumors via the enhanced permeability and retention (EPR) effect. The polymer conjugates were modified with the imaging probes for visualization with magnetic resonance (MR) and fluorescence imaging, respectively, and with poly(2-methyl-2-oxazoline) (POX) to lower unwanted accumulation in internal organs and to slow down the biodegradation rate. We demonstrated that these polymer conjugates were successfully accumulated in tumors, SLNs and other lymph nodes. Modification with POX resulted in lower accumulation not only in internal organs, but also in lymph nodes and tumors. Importantly, we have shown that mannan-based polymer carriers are non-toxic and, when applied to an in vivo murine cancer model, and offer promising potential as the versatile imaging agents.


Sign in / Sign up

Export Citation Format

Share Document