processing stability
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 30)

H-INDEX

24
(FIVE YEARS 1)

Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2140
Author(s):  
Tomas Simurda ◽  
Rosanna Asselta ◽  
Jana Zolkova ◽  
Monika Brunclikova ◽  
Miroslava Dobrotova ◽  
...  

Congenital fibrinogen disorders are rare pathologies of the hemostasis, comprising quantitative (afibrinogenemia, hypofibrinogenemia) and qualitative (dysfibrinogenemia and hypodysfibrinogenemia) disorders. The clinical phenotype is highly heterogeneous, being associated with bleeding, thrombosis, or absence of symptoms. Afibrinogenemia and hypofibrinogenemia are the consequence of mutations in the homozygous, heterozygous, or compound heterozygous state in one of three genes encoding the fibrinogen chains, which can affect the synthesis, assembly, intracellular processing, stability, or secretion of fibrinogen. In addition to standard coagulation tests depending on the formation of fibrin, diagnostics also includes global coagulation assays, which are effective in monitoring the management of replacement therapy. Genetic testing is a key point for confirming the clinical diagnosis. The identification of the precise genetic mutations of congenital fibrinogen disorders is of value to permit early testing of other at risk persons and better understand the correlation between clinical phenotype and genotype. Management of patients with afibrinogenemia is particularly challenging since there are no data from evidence-based medicine studies. Fibrinogen concentrate is used to treat bleeding, whereas for the treatment of thrombotic complications, administered low-molecular-weight heparin is most often. This review deals with updated information about afibrinogenemia and hypofibrinogenemia, contributing to the early diagnosis and effective treatment of these disorders.


2021 ◽  
Vol 11 ◽  
Author(s):  
Guanghui Zhao ◽  
Junhua An ◽  
Qian Pu ◽  
Wenwen Geng ◽  
Haiyun Song ◽  
...  

The N6-methyladenosine (m6A) has been considered as a new layer of epitranscriptomic regulation on mRNA processing, stability, and translation. However, potential roles of m6A RNA methylation modification in tumor immune microenvironment (TIME) of breast cancer are yet fully understood. In this study, we comprehensively evaluated the genetic variations and transcript expressions of 15 m6A regulators in 1,079 breast cancer samples from the Cancer Genome Atlas (TCGA) database. We validated major regulators had significantly differential mRNA and protein expression in tumor tissue compared to normal tissues from 39 pairs of clinical breast cancer samples with different molecular subtypes, and especially high expression of m6A readers YTHDF1 and YTHDF3 predicted poor survival. Two clusters of breast cancer patients identified by the 15 m6A regulators’ pattern showed distinct overall survival, immune activation status, and immune cell infiltration, and clinical samples confirmed the diversity of lymphocytic infiltration. The profiles of these two clusters accorded with that of two classical cancer-immune phenotypes, immune-excluded and immune-inflamed phenotypes, it suggested that m6A regulators-based patterns might serve as crucial mediators of TIME in breast cancer. Moreover, the m6A phenotype-related gene signatures could also be survival predictor in breast cancer. Therefore, comprehensive evaluation of tumor m6A modification pattern will contribute to enhance our understanding of the characterization of immune cell infiltration in the tumor microenvironment and promote the responsiveness of breast cancer to immunotherapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kenia Salazar-Díaz ◽  
Mayra Aquino-Luna ◽  
Eloísa Hernández-Lucero ◽  
Brenda Nieto-Rivera ◽  
Marlon A. Pulido-Torres ◽  
...  

Plant defense and adaptation to adverse environmental conditions rely on gene expression control, such as mRNA transcription, processing, stability, and translation. Sudden temperature changes are common in the era of global warming; thus, understanding plant acclimation responses at the molecular level becomes imperative. mRNA translation initiation regulation has a pivotal role in achieving the synthesis of the appropriate battery of proteins needed to cope with temperature stress. In this study, we analyzed the role of translation initiation factors belonging to the eIF4E family in Arabidopsis acclimation to cold temperatures and freezing tolerance. Using knockout (KO) and overexpressing mutants of AteIF4E1 or AteIF(iso)4E, we found that AteIF4E1 but not AteIF(iso)4E overexpressing lines displayed enhanced tolerance to freezing without previous acclimation at 4°C. However, KO mutant lines, eif(iso)4e-1 and eif4e1-KO, were more sensitive to the stress. Cold acclimation in wild-type plants was accompanied by increased levels of eIF4E1 and eIF(iso)4E transcript levels, polysomes (P) enrichment, and shifts of these factors from translationally non-active to active fractions. Transcripts, previously found as candidates for eIF(iso)4E or eIF4E1 selective translation, changed their distribution in both P and total RNA in the presence of cold. Some of these transcripts changed their polysomal distribution in the mutant and one eIF4E1 overexpressing line. According to this, we propose a role of eIF4E1 and eIF(iso)4E in cold acclimation and freezing tolerance by regulating the expression of stress-related genes.


2021 ◽  
Author(s):  
Guanghui Zhao ◽  
Junhua An ◽  
Qian Pu ◽  
Wenwen Geng ◽  
Haiyun Song ◽  
...  

Abstract Background: The N6-methyladenosine (m6A) has been considered as a new layer of epitranscriptomic regulation on mRNA processing, stability and translation. However, potential roles of m6A RNA methylation modification in tumor immune microenvironment (TIME) of breast cancer are yet fully understood.Methods: We comprehensively evaluated the genetic variations and transcript expressions of 15 m6A regulators, and clinicopathological features in 1,079 breast cancer samples from The Cancer Genome Atlas (TCGA) database. The mRNA and protein levels of several m6A regulators were validated by RT-qPCR, western blot and immunohistochemistry staining in clinical samples from 39 patients with breast cancer. The prognostic values of m6A regulators were systematically evaluated in different database. We correlated the m6A modification patterns of breast cancer with the immune microenvironment and cancer-immune phenotypes. The m6A regulators-related gene signatures were also analyzed to predict the survival of patients.Results: Some m6A regulators’ CNV events might be potential biomarkers for patient’s stage and prognosis in breast cancer. Major regulators had significantly differential mRNA and protein expression in tumor tissue compared to normal samples among different molecular subtypes of breast cancer, and especially high expression of m6A readers YTHDF1 and YTHDF3 predicted poor survival. Two clusters of breast cancer patients identified by the 15 m6A regulators’ pattern showed distinct overall survival, immune activation status and immune cell infiltration. The profiles of these two clusters accorded with that of two classical cancer-immune phenotypes, immune-excluded and immune-inflamed phenotypes. Moreover, the m6A phenotype-related gene signatures could also be survival predictor in breast cancer.Conclusions: The m6A regulators-based patterns might serve as crucial mediators of TIME in breast cancer. Comprehensive evaluation of tumor m6A modification pattern will contribute to enhance our understanding of the characterization of immune cell infiltration in the tumor microenvironment and promote the responsiveness of breast cancer to immunotherapy.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1121
Author(s):  
Nikolay Manavski ◽  
Alexandre Vicente ◽  
Wei Chi ◽  
Jörg Meurer

Modifications in nucleic acids are present in all three domains of life. More than 170 distinct chemical modifications have been reported in cellular RNAs to date. Collectively termed as epitranscriptome, these RNA modifications are often dynamic and involve distinct regulatory proteins that install, remove, and interpret these marks in a site-specific manner. Covalent nucleotide modifications-such as methylations at diverse positions in the bases, polyuridylation, and pseudouridylation and many others impact various events in the lifecycle of an RNA such as folding, localization, processing, stability, ribosome assembly, and translational processes and are thus crucial regulators of the RNA metabolism. In plants, the nuclear/cytoplasmic epitranscriptome plays important roles in a wide range of biological processes, such as organ development, viral infection, and physiological means. Notably, recent transcriptome-wide analyses have also revealed novel dynamic modifications not only in plant nuclear/cytoplasmic RNAs related to photosynthesis but especially in chloroplast mRNAs, suggesting important and hitherto undefined regulatory steps in plastid functions and gene expression. Here we report on the latest findings of known plastid RNA modifications and highlight their relevance for the post-transcriptional regulation of chloroplast gene expression and their role in controlling plant development, stress reactions, and acclimation processes.


2021 ◽  
Vol 118 (30) ◽  
pp. e2104805118
Author(s):  
Kalanghad Puthankalam Srinivas ◽  
Daniel P. Depledge ◽  
Jonathan S. Abebe ◽  
Stephen A. Rice ◽  
Ian Mohr ◽  
...  

N6-methyladenosine (m6A) is the most abundant internal messenger RNA (mRNA) modification, contributing to the processing, stability, and function of methylated RNAs. Methylation occurs in the nucleus during pre-mRNA synthesis and requires a core methyltransferase complex consisting of METTL3, METTL14, and WTAP. During herpes simplex virus (HSV-1) infection, cellular gene expression is profoundly suppressed, allowing the virus to monopolize the host transcription and translation apparatus and antagonize antiviral responses. The extent to which HSV-1 uses or manipulates the m6A pathway is not known. Here, we show that, in primary fibroblasts, HSV-1 orchestrates a striking redistribution of the nuclear m6A machinery that progresses through the infection cycle. METTL3 and METTL14 are dispersed into the cytoplasm, whereas WTAP remains nuclear. Other regulatory subunits of the methyltransferase complex, along with the nuclear m6A-modified RNA binding protein YTHDC1 and nuclear demethylase ALKBH5, are similarly redistributed. These changes require ICP27, a viral regulator of host mRNA processing that mediates the nucleocytoplasmic export of viral late mRNAs. Viral gene expression is initially reduced by small interfering RNA (siRNA)-mediated inactivation of the m6A methyltransferase but becomes less impacted as the infection advances. Redistribution of the nuclear m6A machinery is accompanied by a wide-scale reduction in the installation of m6A and other RNA modifications on both host and viral mRNAs. These results reveal a far-reaching mechanism by which HSV-1 subverts host gene expression to favor viral replication.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 828
Author(s):  
Zhaolong Li ◽  
Ye Dai

This paper presents a simulation and experimental study of the structure of small holes in GH4169 alloy electrolytic ally processed by tube electrodes with different characteristic power sources. It analyzes the multi-physical field coupling relationship of flow, temperature, and electric fields within the interstitial space. The results indicate that the tube electrode electrolytic processing of the GH4169 alloy small hole structure with a pulsed power supply has more uniform temperature and current density distribution within the gap, which is beneficial to the processing accuracy and smoothness of the small hole structure. Meanwhile, SEM was used to analyze the microscopic morphology of the electrode end surface during short-circuiting, and it was concluded that as the processing continued, the electrode end surface gradually produced a non-metallic oxide layer, which destroyed the electric field of the gap and affected the processing stability. The use of high-frequency positive and negative pulse power can effectively avoid the generation of a non-metallic oxide layer. Through the combination of simulation analysis and experimental verification, it is concluded that increasing electrolyte pressure in stages can effectively improve machining accuracy and stability. The interstitial current increases as the feed rate of the tool electrode increases, and the diameter of the machined small hole decreases as it increases.


Nano Express ◽  
2021 ◽  
Author(s):  
Gilles Delie ◽  
Daniele Chiappe ◽  
Inge Asselberghs ◽  
Cedric Huyghebaert ◽  
Iuliana Radu ◽  
...  
Keyword(s):  

Author(s):  
Jiaying Zhu ◽  
Changhao Li ◽  
Xu Peng ◽  
Xiuren Zhang

Abstract The majority of the genome is transcribed to RNA in living organisms. RNA transcripts can form astonishing arrays of secondary and tertiary structures via Watson-Crick, Hoogsteen or wobble base pairing. In vivo, RNA folding is not a simple thermodynamics event of minimizing free energy. Instead, the process is constrained by transcription, RNA binding proteins (RBPs), steric factors and micro-environment. RNA secondary structure (RSS) plays myriad roles in numerous biological processes, such as RNA processing, stability, transportation and translation in prokaryotes and eukaryotes. Emerging evidence has also implicated RSS in RNA trafficking, liquid-liquid phase separation and plant responses to environmental variations such as temperature and salinity. At the molecular level, RSS is correlated with regulating splicing, polyadenylation, protein systhsis, and miRNA biogenesis and functions. In this review, we summarized newly reported methods for probing RSS in vivo and functions and mechanisms of RSS in plant physiology.


Sign in / Sign up

Export Citation Format

Share Document