scholarly journals In vivo rescue of recombinant Zika virus from an infectious cDNA clone and its implications in vaccine development

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gines Ávila-Pérez ◽  
Aitor Nogales ◽  
Jun-Gyu Park ◽  
Desarey Morales Vasquez ◽  
David A. Dean ◽  
...  
mBio ◽  
2016 ◽  
Vol 7 (4) ◽  
Author(s):  
Konstantin A. Tsetsarkin ◽  
Heather Kenney ◽  
Rubing Chen ◽  
Guangping Liu ◽  
Hasmik Manukyan ◽  
...  

ABSTRACTAn arthropod-borne virus, Zika virus (ZIKV), has recently emerged as a major human pathogen. Associated with complications during perinatal development and Guillain-Barré syndrome in adults, ZIKV raises new challenges for understanding the molecular determinants of flavivirus pathogenesis. This underscores the necessity for the development of a reverse genetic system based on an epidemic ZIKV strain. Here, we describe the generation and characterization in cell cultures of an infectious cDNA clone of ZIKV isolated from the 2015 epidemic in Brazil. The cDNA-derived ZIKV replicated efficiently in a variety of cell lines, including those of both neuronal and placental origin. We observed that the growth of cDNA-derived virus was attenuated compared to the growth of the parental isolate in most cell lines, which correlates with substantial differences in sequence heterogeneity between these viruses that were determined by deep-sequencing analysis. Our findings support the role of genetic diversity in maintaining the replicative fitness of viral populations under changing conditions. Moreover, these results indicate that caution should be exercised when interpreting the results of reverse-genetics experiments in attempts to accurately predict the biology of natural viruses. Finally, a Vero cell-adapted cDNA clone of ZIKV was generated that can be used as a convenient platform for studies aimed at the development of ZIKV vaccines and therapeutics.IMPORTANCEThe availability of genetic tools and laboratory models determines the progress in understanding mechanisms of virus emergence and pathogenesis. Recent large-scale outbreaks of Zika virus (ZIKV) that were linked to complications during perinatal development and Guillain-Barré syndrome in adults emphasize the urgency for the development of a reverse-genetics system based on an epidemic ZIKV strain. Here, we report a stable infectious cDNA clone for ZIKV isolated during the 2015 epidemic in Brazil, as well as a Vero cell-adapted version of it, which will be used for virus-host interaction studies and vaccine development.


Viruses ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 547 ◽  
Author(s):  
Silvia Márquez-Jurado ◽  
Aitor Nogales ◽  
Ginés Ávila-Pérez ◽  
Francisco Iborra ◽  
Luis Martínez-Sobrido ◽  
...  

The recent outbreaks of Zika virus (ZIKV), its association with Guillain–Barré syndrome and fetal abnormalities, and the lack of approved vaccines and antivirals, highlight the importance of developing countermeasures to combat ZIKV disease. In this respect, infectious clones constitute excellent tools to accomplish these goals. However, flavivirus infectious clones are often difficult to work with due to the toxicity of some flavivirus sequences in bacteria. To bypass this problem, several alternative approaches have been applied for the generation of ZIKV clones including, among others, in vitro ligation, insertions of introns and using infectious subgenomic amplicons. Here, we report a simple and novel DNA-launched approach based on the use of a bacterial artificial chromosome (BAC) to generate a cDNA clone of Rio Grande do Norte Natal ZIKV strain. The sequence was identified from the brain tissue of an aborted fetus with microcephaly. The BAC clone was fully stable in bacteria and the infectious virus was efficiently recovered in Vero cells through direct delivery of the cDNA clone. The rescued virus yielded high titers in Vero cells and was pathogenic in a validated mouse model (A129 mice) of ZIKV infection. Furthermore, using this infectious clone we have generated a mutant ZIKV containing a single amino acid substitution (A175V) in the NS2A protein that presented reduced viral RNA synthesis in cell cultures, was highly attenuated in vivo and induced fully protection against a lethal challenge with ZIKV wild-type. This BAC approach provides a stable and reliable reverse genetic system for ZIKV that will help to identify viral determinants of virulence and facilitate the development of vaccine and therapeutic strategies.


2016 ◽  
Vol 19 (6) ◽  
pp. 891-900 ◽  
Author(s):  
Chao Shan ◽  
Xuping Xie ◽  
Antonio E. Muruato ◽  
Shannan L. Rossi ◽  
Christopher M. Roundy ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1142
Author(s):  
Danielle Porier ◽  
Sarah Wilson ◽  
Dawn Auguste ◽  
Andrew Leber ◽  
Sheryl Coutermarsh-Ott ◽  
...  

Vaccination remains critical for viral disease outbreak prevention and control, but conventional vaccine development typically involves trade-offs between safety and immunogenicity. We used a recently discovered insect-specific flavivirus as a vector in order to develop an exceptionally safe, flavivirus vaccine candidate with single-dose efficacy. To evaluate the safety and efficacy of this platform, we created a chimeric Zika virus (ZIKV) vaccine candidate, designated Aripo/Zika virus (ARPV/ZIKV). ZIKV has caused immense economic and public health impacts throughout the Americas and remains a significant public health threat. ARPV/ZIKV vaccination showed exceptional safety due to ARPV/ZIKV’s inherent vertebrate host-restriction. ARPV/ZIKV showed no evidence of replication or translation in vitro and showed no hematological, histological or pathogenic effects in vivo. A single-dose immunization with ARPV/ZIKV induced rapid and robust neutralizing antibody and cellular responses, which offered complete protection against ZIKV-induced morbidity, mortality and in utero transmission in immune-competent and -compromised murine models. Splenocytes derived from vaccinated mice demonstrated significant CD4+ and CD8+ responses and significant cytokine production post-antigen exposure. Altogether, our results further support that chimeric insect-specific flaviviruses are a promising strategy to restrict flavivirus emergence via vaccine development.


2000 ◽  
Vol 31 (1) ◽  
pp. 59-60
Author(s):  
P. J.G.M. Steverink ◽  
J. M.A. Pol ◽  
J.N.A. Bos-de Ruijter ◽  
J. J.M. Meulenberg

Sign in / Sign up

Export Citation Format

Share Document